Birinchi tartibli differensial tenglamalar, yuqori tartibli differensial tenglamalar, chiziqli o‘zgarmas koeffisentli differensial tenglamalar.
Mavzu: Birinchi tartibli differensial tenglamalar, yuqori tartibli differensial tenglamalar, chiziqli o‘zgarmas koeffisentli differensial tenglamalar. Reja: 1. Birinchi tartibli differensial tenglamalar va ularning turlari; 2. Yuqori tartibli differensial tenglamalar turlari va yechish usullari; 3. Chiziqli o‘zgarmas koeffisentli differensial tenglamalar.
Birinchi tartibli differensial tenglamalar Ta’rif . Erkli o’zgaruvchi x∈(a,b) , noma’lum funksiya y(x) va uning y'(x),y''(x),...,y(n)(x) hosilalari orasidagi ushbu F(x,y(x),y'(x),...,y(n)(x))=0 (1) funksional bog’lanishga n− tartibli oddiy differensial tenglama deyiladi. Ta’rif-2. Tartibi n bo’lgan (1) tenglamani (a,b) intervalda ayniyatga aylantiruvchi funksiyaga, uning yechimi deyiladi. Jumladan, funksiya quyidagi differensial tenglamaning yechimi ekanligini tekshirish qiyinchilik tug‘dirmaydi. Ta’rif-3. Yuqori tartibli hosilaga nisbatan yechilgan oddiy differensial tenglamaning umumiy ko‘rinishi quyidagicha bo’ladi: . (2) Kelgusida biz, bu turdagi oddiy differensial tenglamaning ushbu (3) Boshlang‘ich shartlarni qanoatlantiruvchi yechimini topishga Koshi masalasi deymiz. Xususan hosilaga nisbatan yechilmagan 1-tartibli differensial tenglama F(x,y,y')=0 (4) ko‘rinishda bo‘ladi. Birinchi tartibli hosilaga nisbatan yechilgan differensial tenglama esa y'= f(x,y) (5) ko‘rinishda bo‘ladi.
Ta’rif-4. Hosilaga nisbatan yechilgan (5) differensial tenglamaningy(x0)= y0 (6) boshlang‘ich shartni qanoatlantiruvchi y(x) yechimini topishga Koshi masalasi deyiladi. Bu yerda x0 va y0 oldindan berilgan haqiqiy sonlardir. Geometrik tilda: y'= f(x,y) tenglamaning (x0,y0) nuqtadan o‘tuvchi integral chizig‘ini topishga Koshi masalasi deyiladi. O‘zgaruvchilari ajraladigan differensial tenglamalar Ushbu y'= f(x)⋅g(y) (7) ko’rinishdagi differensial tenglamaga o’zgaruvchilari ajraladigan differensial tenglama deyiladi. Bu yerdagi f(x) va g(y) funksiyalar mos ravishda a< x<b va c< y<d oraliqlarda aniqlangan uzluksiz deb qaraladi. Bundan ko’rinadiki, (7) differensial tenglamaning o’ng tomoni quyidagi D = (a,b)× (c,d)= {(x,y)∈ R2: a< x<b,c< y<d} sohada aniqlangan va uzluksizdir. (7) ko’rinishdagi differensial tenglamaning yechimini topish uchun quyidagi ikki holni ko‘rib chiqamiz: 1-hol. Aytaylik, g(y)≠0,y∈(c,d) bo’lsin. U holda (7) differensial tenglamani ushbu dy g(y) = f(x)dx ko‘rinishda yozish mumkin. Bu tenglikning ikkala tomonini integrallab ∫ dy g(y) =∫ f(x)dx (8)
munosabatni hosil qilamiz. Ma’lumki, [g(y)]−1 va f(x) funksiyalar uzluksiz ekanligidan, ularning mos ravishda G(y) va F(x) boshlang ‘ ich funksiyalarining mavjudligi kelib chiqadi. Shuning uchun (1.1.2) tenglikni quyidagi G (y)= F (x)+C , C = const (9) ko ‘ rinishda yozish mumkin. Qaralayotgan g(y)≠ 0 holda G(y) monoton funksiya bo’ladi. Chunki, G'(y)= 1 g(y) ≠ 0. Bundan esa uning teskarisi G−1 mavjud ekanligi kelib chiqadi. Yuqoridagi (1.1.3) tenglikdan y(x)= G−1(F (x)+C ) (10) funksiyani topamiz. O ‘ z navbatida bu funksiya qaralayotgan holda (1) differensial tenglamaning umumiy yechimini ifodalaydi. 2-hol. Aytaylik biror y(x)= ¯y∈(c,d) nuqtada g(¯y)= 0 bo’lsin. Bu tenglamaning ildizi yordamida aniqlangan y(x)= ¯y o’zgarmas funksiya (7) differensial tenglamaning yechimidan iborat bo’ladi. Misol 1:O ‘ zgaruvchilari ajraladigan differensial tenglamani yeching: Yechish:
Misol 2: differensial tenglamani yeching Yechish: Boshlang‘ich shartdan, , bundan, Bir jinsli va kvazi bir jinsli differensial tenglamalar Ta’rif. Agar quyidagi y'= f(x,y) (1) differensial tenglamaning o‘ng tomonidagi f(x,y) funksiya uchun f(x,y)= f(λx ,λy ), ∀ λ>0 (2) shart bajarilsa, (1) differensial tenglamaga bir jinsli differensial tenglama deyiladi. Oxirgi (2) tenglikda λ= 1 x desak, f(x,y)= f(1,y x):= h( y x) munosabat hosil bo‘ladi. Buning natijasida (1) differensial tenglama ushbu y'= h( y x) (3)