logo

Almashtirish va faktorial

Загружено в:

16.08.2023

Скачано:

0

Размер:

345.09375 KB
Almashtirish va 
faktorial
Лавлинский М.В. , LavlinskiMV@mail.ru  I.  Факториал
n (n!) sonining faktoriali 1 dan n gacha bo‘lgan barcha 
natural sonlarning ko‘paytmasidir.
Agar    n=0 bo’lsa,     n!=1
Agar    n>0 bo’lsa,   n!=1 2	 3	  …	

 n
#:
2! =
3! =
4! =
5! = 1  2 =  2
1  2  3 =  6
1  2  3   4 =  24
1  2  3   4   5 = 
1201800yil - L. Arbogast (1759 - 1803) faktorial atamani kiritdi.
1808 yil - K. Krump (1760 - 1826) n belgisini o'ylab topdi!
Rekkurent formula:	


	
			
	
	
0	)!	1	(	
0	1	
!	
n	n	n	
n	
n  Faktorial jadvali
16! = 20922789888000
17! = 355687428096000
18! = 6402373705728000
19! = 121645100408832000
20! = 2432902008176640000
21! = 51090942171709440000
22! = 1124000727777607680000
23! = 25852016738884976640000
24! = 620448401733239439360000
25! = 15511210043330985984000000
26! = 403291461126605635584000000
27! = 10888869450418352160768000000
28! = 304888344611713860501504000000
29! = 8841761993739701954543616000000
30! = 2652528598121910586363084800000000! = 1
1! = 1
2! = 2
3! = 6
4! = 24
5! = 120
6! = 720
7! = 5040
8! = 40320
9! = 362880
10! = 3628800
11! = 39916800
12! = 479001600
13! = 6227020800
14! = 87178291200
15! = 1307674368000 100! ≈ 9,33×10 157
1000! ≈ 4,02×10 2567
10000! ≈ 2,85×10 35 659 IIMasala yechish
#1. Hisoblang5	
!	5	
5	
5	!	4		
	!	4		4	3	2	1					24	
# 2 .	
!	4	!	3	!	7	
!	14	
		4	3	2	1	3	2	1	!	7	
14	13	12	11	10	9	8	!	7	
							
							
	
1	
14	13	12	11	5					
	
120120	
# 3 .  11!  Faktoriali    49  ga bo’linadimi ?	
7	7	
11	10	9	8	7	6	5	4	3	2	1	
	
									
Javob :  Yo’q # 4 .  26!  Nechta nol bilan tugaydi 26	25	24	23	22	21	
20	19	18	17	16	15	14	13	12	11	
10	9	8	7	6	5	4	3	2	1	
!	26	
					
										
										

Javob :  6
# 5 . Kasrni qisqartiring	
)!	3	4	(	
)!	1	4	(	

	
m
m	
)!	3	4	(	
)	1	4	)(	2	4	(	)!	3	4	(	
	
			
	
m	
m	m	m	
)	1	4	)(	2	4	(				m	m #6. Ifodani soddalashtiring)	6	5	(	!	3	
)	1	3	(	)!	3	(	
:	
)!	3	(	
!	)!	3	3(	
2	
		
				
k	k	
k	k	
k	
k	k	
)	1	3	(	)!	3	(	
)	6	5	(	!	3	
)!	3	(	
!	)	3	3(	)	2	3	(	)	1	3	(	)!	3	(	
2	
		
		
	
							
	
k	k	
k	k	
k	
k	k	k	k	k	
)	3	)(	2	)(	1	(	!	
)	6	5	(	!	3	
1	
!	)	3	3	(	)	2	3	(	
2	
			
		
	
				
	
k	k	k	k	
k	k	k	k	k	
)	3	)(	2	)(	1	(	
)	3	)(	2	(	!	3	
1	
)	3	3	(	)	2	3	(	
			
		
	
			
	
k	k	k	
k	k	k	k	
)	1	(	
!	3	)	3	3	(	)	2	3	(	
	
				
	
k	
k	k	
)	1	(	
6	)	1	(	3	)	2	3	(	
	
					
	
k	
k	k	
)	2	3	(	18				k #7. Tenglamani yeching)!	11	(	77	)!	10	(				k	k	
)!	11	(	
)!	11	(	77	
)!	11	(	
)!	10	(	
	
	
	

	
k	
k	
k
k	
	
)!	11	(	
)!	11	(	77	
)!	11	(	
)	10	(	)!	11	(	
	
	
	
	
			
k	
k	
k	
k	k	
	
77	)	10	(			k	
87		k III. Almashtirish
n ta elementning almashtirilishi bir-biridan faqat 
elementlarning ulardagi joylashish tartibi bilan farq qiluvchi 
n ta elementning birikmasidir.
P
n  belgilanishi
#1. Raqamlarning barcha mumkin bo'lgan almashtirishlarini 
toping : 1, 2, 3.
1 2 3
2 1 3
3 1 2 1 3 2
2 3 1
3 2 1
O'zgartirishlar sonini topish formulasi :
P
n  = n! P
3  =  3 !  = 6 IV. Masala yechish
Masala   №1.
Musiqachilar qancha 
turli yo'llar bilan 
o'tirishlari mumkin ?
Yechish :
n=4
P
4  = 4! =24
Javob :  24“ Tergovchi   maymun, eshak, echki Ha,  maymoq  
ayiq kvartetni o'ynashga qaror qildi lar . 
Bizda notalar, bas, viola, ikkita skripka bor  va   
o'tloqqa o'tirdi lar ,
  - O'z san'atingiz bilan nurni zabt eting  dedi 
maymun  Ular  shuncha harakat  qilish sada  , 
hech qanday ma'no yo'q.
  "To'xtang, birodarlar, to'xtang!" - deb qichqiradi 
Maymun. 
Musiqa qanday ketadi? Axir siz bunday 
o'tirmaysiz.
                                *** *** *** *** *** 
Ular Eshakka bo'ysunishdi  va  bir qatorda 
xushmuomalalik bilan o'tirishdi;
  Shunday bo'lsa-da, to'rtlik yaxshi ketmaydi. 
Bu erda ular har qachongidan ham ko'proq tahlil 
qilishdi 
Va qarama-qarshi  o’tirishdi 
Kimga va qanday o'tirish kerak ... "   5 ta rangli sharlarni nechi hil usul bilan grilanlarga joylashtirish 
mumkin ? 
Yechish  :
Р
5  = 5! = 1·2·3·4·5= 120
Javob :  24Задача 2. Masala № 3.  9-sinfning payshanba kungi jadvaliga 6 ta fan 
kiritilishi kerak: rus tili, adabiyot, algebra, geografiya, fizika, 
jismoniy tarbiya. Ushbu kun uchun jadvalni nechta usulda 
yaratishingiz mumkin ?
P
6  =   6!   =   720
Masala  № 4 .  
Agar siz jismoniy tarbiya darsi oxirgi bo'lishini istasangiz, bir xil 6 
ta fanning jadvalini necha xil usulda tuzishingiz mumkin?
P
5 =5!=  120
Задача №5.
Rus tili va adabiyoti yonma-yon turadigan shunday jadvalni bir 
xil 6 ta fandan nechta usulda tuzish mumkin?
P
5 =   5! *2  =  24 0   (1.  Rus tili   2.  adabiyot  ) Masala  6.  
4, 5, 6, 7, 8 raqamlari yordamida hammasi bir-biridan farq 
qiladigan nechta turli 5 xonali sonlarni yozish mumkin?
P
5  = 5 !  =  120
Masala  7.
8 ta kitobni javonda nechta usulda joylashtirish mumkin, agar 
ular orasida bitta muallifning 2 ta kitobi bo'lsa, ular har qanday 
tartibga solish bilan yonma-yon turishi kerak?
P
7  = 7 !  = 5040
5040 * 2 =  10080 V. Faktorialni umumlashtirish
1.  n sonning juft faktoriali
Juft n faktorial uchun  :
n!! = 2  ·  4  ·  6  ·  …  · n
Toq n factorial uchun :
n!! =  1 ·   3 ·   5   ·  …  · n
#:  Hisoblang :
10!! =
9!! =
0!! =   2  ·  4  ·  6  ·  8  ·  10 =  3840
1 ·   3 ·   5   ·  7  ·  9 =  945
1
!!n sonining juft faktorial -  n!!  bilan belgilanadi
-
[1, n] segmentidagi n bilan bir xil paritetga 
-
ega bo'lgan barcha natural sonlarning ko'paytmasi.   2. Праймориал  ( primordial ) 
2. n sonining boshi - n # bilan belgilanadi - n dan 
oshmaydigan tub sonlarning ko'paytmasi.
11# = 
12# = 2 · 3 · 5 · 7 · 11 =  2310
#:  hisoblang  :
7 # =
5# =
3# =
2# = 8 # =  9 # =  10 # = 2 · 3 · 5 · 7 =  210
6 # =   2 · 3 · 5 =  30
4 # =   2 · 3 =  6
=  2
# 3 . 
n sonining superfaktoriali - sf (n) bilan belgilanadi - 
birinchi n seperfaktorialni- 1995 yilda - N. Sloan va S. 
Plowf tomonidan aniqlangan
sf(4)  =  1 !  ·  2!  ·  3!  ·  4!  =  2 88
#:  Hisoblang :
sf(3) =
sf(2) =
sf(1) =
sf(0) = 1!  ·  2!  ·  3!  =  12
1!  ·  2!  =  2
1!  =  1
1
sf E’tiboringiz uchun 
raxmat!

Almashtirish va faktorial Лавлинский М.В. , LavlinskiMV@mail.ru

I. Факториал n (n!) sonining faktoriali 1 dan n gacha bo‘lgan barcha natural sonlarning ko‘paytmasidir. Agar n=0 bo’lsa, n!=1 Agar n>0 bo’lsa, n!=1 2  3  …  n #: 2! = 3! = 4! = 5! = 1  2 = 2 1  2  3 = 6 1  2  3  4 = 24 1  2  3  4  5 = 1201800yil - L. Arbogast (1759 - 1803) faktorial atamani kiritdi. 1808 yil - K. Krump (1760 - 1826) n belgisini o'ylab topdi! Rekkurent formula:         0 )! 1 ( 0 1 ! n n n n n

Faktorial jadvali 16! = 20922789888000 17! = 355687428096000 18! = 6402373705728000 19! = 121645100408832000 20! = 2432902008176640000 21! = 51090942171709440000 22! = 1124000727777607680000 23! = 25852016738884976640000 24! = 620448401733239439360000 25! = 15511210043330985984000000 26! = 403291461126605635584000000 27! = 10888869450418352160768000000 28! = 304888344611713860501504000000 29! = 8841761993739701954543616000000 30! = 2652528598121910586363084800000000! = 1 1! = 1 2! = 2 3! = 6 4! = 24 5! = 120 6! = 720 7! = 5040 8! = 40320 9! = 362880 10! = 3628800 11! = 39916800 12! = 479001600 13! = 6227020800 14! = 87178291200 15! = 1307674368000 100! ≈ 9,33×10 157 1000! ≈ 4,02×10 2567 10000! ≈ 2,85×10 35 659

IIMasala yechish #1. Hisoblang5 ! 5 5 5 ! 4   ! 4  4 3 2 1     24  # 2 . ! 4 ! 3 ! 7 ! 14   4 3 2 1 3 2 1 ! 7 14 13 12 11 10 9 8 ! 7                1 14 13 12 11 5      120120  # 3 . 11! Faktoriali 49 ga bo’linadimi ? 7 7 11 10 9 8 7 6 5 4 3 2 1            Javob : Yo’q

# 4 . 26! Nechta nol bilan tugaydi 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 ! 26                           Javob : 6 # 5 . Kasrni qisqartiring )! 3 4 ( )! 1 4 (   m m )! 3 4 ( ) 1 4 )( 2 4 ( )! 3 4 (      m m m m ) 1 4 )( 2 4 (    m m