HOSILA
Mavzu: HOSILA REJA 1. Hosila ta’rifi. 2. Hosilaning geometrik ma’nosi. 3. Hosilaning mexanik ma’nosi. 4. Hosila jadvali.
HOSILA TA’RI FI Argument orttirmasi Ta’rif . Funksiya orttirmasining argument orttirmasiga nisbatining , argument orttirmasi nolga intilgandagi limitini f(x) funksiyaning x o nuqtadagi hosilasi deyiladi. ∆ x ∆ y x o x o + x∆ xy O∆ x = x - x o F u n k s iy a o r ttir m a s i ∆ y = f(x) - f(x o )=f(x o + x)-f(x ∆ o ) x x f x x f x y x f x x o ) ( ) ( lim lim ) (' 0 0
HOSILA JADVALI. 1 )' (ln ) 7 , ln 1 )' (log ) 6 , ln ) ( ) 5 , )' ( ) 4 )' ( ) 3 , 1 ' ) 2 , 0 ' ) 1 1 x x a x x a a a e e x c x x с a x x x x c c . sin 1 )' ( ) 12 , cos 1 )' ( ) 11 sin )' (cos ) 10 , cos )' (sin ) 9 , 2 1 )' ( ) 8 2 2 x ctgx x tgx x x x x x x
HOSI LAN IN G GEOMETRI K MA’N OSIU R I N M A f(x) funksiyaning x o nuqtadagi hosilasi , f(x) funksiya grafigiga x o nuqtasidan o’tkazilgan urinmaning Ox o’qining musbat yo’nalishi bilan hosil qilgan burchak tangensiga teng. Y =f(x ) x o xy O αf ΄ (x o ) = tg α f (x) = x -2 f ʹ ( x) = tg45 o =1
HOSILAN IN G MEX AN IK MA’N OSI S(t ) qonuniyat bilan harakatlanayotgan moddiy nuqtaning t o momentdagi oniy tezligi , S(t) yo’ldan vaqt bo’yicha birinchi tartibli hosilasiga teng: V(t o ) =S ʹ (t o ) S (t) = 3t 2 +4t+3, v(t)-? , a (t) -? v ( t) =(3t 2 +4t+3) ʹ =6t+4, a (t)=(6t+4) ʹ =6.S ΄ (t) = V (t) – tezlik , S ΄΄ (t) = v ΄ (t) = a (t) – tezlanish .