logo

HOSILA

Загружено в:

15.08.2023

Скачано:

0

Размер:

1212.5 KB
Mavzu:  HOSILA
REJA

1. Hosila ta’rifi.

2. Hosilaning geometrik 
ma’nosi.

3. Hosilaning mexanik ma’nosi.

4. Hosila jadvali.   HOSILA   TA’RI FI
Argument
orttirmasi     Ta’rif .   Funksiya orttirmasining argument 
orttirmasiga nisbatining , argument orttirmasi 
nolga intilgandagi limitini   f(x)  funksiyaning   x
o  
nuqtadagi  hosilasi  deyiladi.
∆
x ∆
y
x
o x
o + x∆ xy
O∆ x = x - x
o	F	u	n	k	s	iy	a	o	r	ttir	m	a	s	i
∆ y = f(x) - f(x
o )=f(x
o + x)-f(x	
∆
o )	
x	
x	f	x	x	f	
x
y	
x	f	
x	x	
o	
	
			
	

	
	
				
)	(	)	(	
lim	lim	)	('	
0	0   HOSILA   JADVALI.	
1	
)'	(ln	)	7	
,	
ln
1	
)'	(log	)	6	
,	ln	)	(	)	5	
,	)'	(	)	4	
)'	(	)	3	
,	1	'	)	2	
,	0	'	)	1	
1	
x	
x	
a	x	
x	
a	a	a	
e	e	
x	c	x	
x
с	
a	
x	x	
x	x	
c	c	
	
	

	
		

	
	
.	
sin	
1	
)'	(	)	12	
,	
cos	
1	
)'	(	)	11	
sin	)'	(cos	)	10	
,	cos	)'	(sin	)	9	
,	
2	
1	
)'	(	)	8	
2	
2	
x	
ctgx	
x	
tgx	
x	x	
x	x	
x	
x	
		
	
		
	
   HOSI LAN IN G   GEOMETRI K 
MA’N OSIU	
 R	
 I N	
 M	
 A
       f(x)  funksiyaning   x
o  nuqtadagi  hosilasi  ,   f(x)  
funksiya grafigiga   x
o  nuqtasidan o’tkazilgan 
urinmaning  Ox  o’qining musbat yo’nalishi bilan 
hosil qilgan burchak tangensiga  teng.
Y =f(x )
x
o xy
O αf  ΄ (x
o ) = tg α
f (x) = x -2
f  ʹ ( x) = tg45 o 
=1   HOSILAN IN G   MEX AN IK 
MA’N OSI
       S(t )  qonuniyat bilan harakatlanayotgan 
moddiy nuqtaning   t
o  momentdagi  oniy tezligi , 
S(t) yo’ldan vaqt  bo’yicha birinchi tartibli  
hosilasiga  teng:   
                                 V(t
o ) =S ʹ (t
o )
S (t) = 3t 2
+4t+3,  v(t)-?  ,   a (t) -?
v ( t) =(3t 2
+4t+3)  ʹ =6t+4,  a (t)=(6t+4) ʹ =6.S  ΄ (t) = V   (t) – tezlik ,
S  ΄΄ (t) =  v  ΄ (t) =  a (t) – tezlanish .   						
		x	x	x	x	x	x	x	x	x	
x	x	x	x	f	x	x	f	y	
topiladi	orttirmasi	funksiya	Yechish	
toping	hosilani	x	y	
												
										
	
)	2	(	)	(	
:	.	
.	.	1	
2	2	
2	
		x	y	Jav	x	x	x	x	
x	
x	x	x	
x
y	
y	
x	
x	x	
2	'	.	.	2	)	0	2	(	2	
)	2	(	
lim	
lim	lim	
0	
0	0	
0	
0	0	
							
	
	
				
	

	
		
		
			Funk siy aning  
hoslasini  
t a’rif bo’y icha t oping.
Funk siy aning  hoslasini  t a’rif bo’y icha 
t oping.
1.  y=4x+3          2.  y=x 3
    17.	.	17	1	32	48	
1	)	2	(	16	)	2	(	12	)	2	('	
1	16	12	
0	1	8	2	4	3	
)'	3	8	4(	'	
:	
?	)	2	('	,	3	8	4	.	2	
.	4	'	.	
0	4	)'	8	4(	'	
:	
.	8	4	.	1	
2	
2	
1	2	1	3	
2	3	
2	3	
Jav	
y	
x	x	
x	x	
x	x	x	y
Yechish	
y	x	x	x	y	
y	Jav	
x	y
Yechish	
x	y	
				
									
			
							
					
						
	
				
		
		
.	?	)	1	('	,	3	.	4	
?	)	2('	,	2	
2
1	
2,	0	.	3	
?	'	,	1	4	2	2	.	2	
,	?	)	3	('	,	6	5	.	1	
.	)'	(	
4	
2	2	
2	4
2	
1
			
				
					
				
		
	
y	x	y	
y	x	x	y	
y	x	x	y	
y	x	y	
x	x	
		
NAMUNA YORDAMIDA  
1 - VAZIFAHI BAJARAMIZ
DARAJALI
fUNKSIYA
HOSILASINI
HISOBLANG   .	
12
1	
)	20	('	.	
.	
12
1	
4
1	
3
1	
2	
3
1	
2	
3
1	
8	
3
1	
)	12	20(	
3
1	
)	20('	
,	)	12	(	
3
1	
)	12	(	
3
1	
)'	)	12	((	)	('	
:	
?	)	20	('	.	12	)	(	.	1	
2	3
2	3	3
2	
3
2	
3
2	1	3
1	
3
1	
3	
	
												
						
			
	
			
		
f	Jav
f	
x	x	x	x	f	
Yechish	
f	x	x	fMUSTAQIL
YECHING	
.	?	'	,	.	6	
?	'	,	3	cos	3	sin	.	5	
.	?	)	7	('	,	3	.	4	
?	)	2	('	,	2	
4
1	
5,	0	.	3	
?	'	,	5	2	.	2	
,	?	)	1	('	,	6	25	.	1	
2	2	
2	2	
2	3	
2	
			
			
			
				
				
			
y	ctgx	tgx	y	
y	x	x	y	
y	x	y	
y	x	x	x	y	
y	x	x	y	
y	x	x	y   .	?	)	35	('	,	3	.	4	
,	?	)	2	('	,	2	4	.	3	
?	)	1('	,	6	5	.	2	
,	?	)	3	('	,	2	8	2	.	1	
5	
3
3
2	
			
			
			
					
y	x	y	
y	x	x	y	
y	x	x	y	
y	x	x	yUYGA  VAZIFA
            I.    BUGUN NIMALARNI 
O’RGANDIM ?
II. HOSILANI 
HISOBLANG   BUGUN NIMALARNI O’RGANDIM ?

1. Hosila ta’rifi.

2. Hosilaning geometrik 
ma’nosi.

3. Hosilaning mexanik ma’nosi.

4. Hosila jadvali.   GURUX TO’PLAGAN 
BALLAR
1-guruh                        bal
2-guruh                         bal
3-guruh                         bal   1. Карп А.П. Сборник задач по алгебре 
началом анализа. Учебное пособие для 
учашихся школ и классов с углебленным 
изучением математики. М.:Просвещение , 
1995.
2.   Дорофеев Г.В. ,Кузнецова Л.Я.,СедоваЕ.А. 
Алгебра  и начала  анализа. 10 кл. Задачник 
для общеобразоват. Учреждений. М.:Дрофа , 
20 0 8  . ADABIYOTLAR   E’TIBORINGIZ  
UCHUN
R A H M A T !

Mavzu: HOSILA REJA  1. Hosila ta’rifi.  2. Hosilaning geometrik ma’nosi.  3. Hosilaning mexanik ma’nosi.  4. Hosila jadvali.

HOSILA TA’RI FI Argument orttirmasi Ta’rif . Funksiya orttirmasining argument orttirmasiga nisbatining , argument orttirmasi nolga intilgandagi limitini f(x) funksiyaning x o nuqtadagi hosilasi deyiladi. ∆ x ∆ y x o x o + x∆ xy O∆ x = x - x o F u n k s iy a o r ttir m a s i ∆ y = f(x) - f(x o )=f(x o + x)-f(x ∆ o ) x x f x x f x y x f x x o             ) ( ) ( lim lim ) (' 0 0

HOSILA JADVALI. 1 )' (ln ) 7 , ln 1 )' (log ) 6 , ln ) ( ) 5 , )' ( ) 4 )' ( ) 3 , 1 ' ) 2 , 0 ' ) 1 1 x x a x x a a a e e x c x x с a x x x x c c          . sin 1 )' ( ) 12 , cos 1 )' ( ) 11 sin )' (cos ) 10 , cos )' (sin ) 9 , 2 1 )' ( ) 8 2 2 x ctgx x tgx x x x x x x       

HOSI LAN IN G GEOMETRI K MA’N OSIU R I N M A f(x) funksiyaning x o nuqtadagi hosilasi , f(x) funksiya grafigiga x o nuqtasidan o’tkazilgan urinmaning Ox o’qining musbat yo’nalishi bilan hosil qilgan burchak tangensiga teng. Y =f(x ) x o xy O αf ΄ (x o ) = tg α f (x) = x -2 f ʹ ( x) = tg45 o =1

HOSILAN IN G MEX AN IK MA’N OSI S(t ) qonuniyat bilan harakatlanayotgan moddiy nuqtaning t o momentdagi oniy tezligi , S(t) yo’ldan vaqt bo’yicha birinchi tartibli hosilasiga teng: V(t o ) =S ʹ (t o ) S (t) = 3t 2 +4t+3, v(t)-? , a (t) -? v ( t) =(3t 2 +4t+3) ʹ =6t+4, a (t)=(6t+4) ʹ =6.S ΄ (t) = V (t) – tezlik , S ΄΄ (t) = v ΄ (t) = a (t) – tezlanish .