logo

keltirish formulalari

Загружено в:

15.08.2023

Скачано:

0

Размер:

687.3330078125 KB
 Birlik aylana
х    
    
      V  у
R = 1 Trigonometrik funksiyalarini ishoralari
y  =  sin x  
y
x y  =  cos x  
y
x y  =  tg x, y = ctg x  
y
x+
+ +
+ + +
  
                  
         
        
      V   V   V   Choragini belgilang	273	
	96	
		120	
						
	
	
	
2	
	


2	
	
	
	
2	
3	
	


23	
	273	
	96	
		120	
						
	
	
	
2	
	
	
	
2	
	
	
	
2	
3	
	
	
	
2	
3 ctg       =sin      =6

3	tg 45 ° =cos 60 ° =
cos 135 ° = ?21	
2
1
1
3 3	
6
	
3
	
2
1	
2
1	
3
3 Keltirish formulalari

-  Buformulalari  har  qanday  burchakning 
trigonometrik  funktsiyalarining  qiymatlarini 
birinchi  chorak  burchagi  funktsiyalari  bo'yicha 
ifodalashga  imkon  beradigan  formulalar,  ya'ni. 
<90 °.0	
90			
0	
90		 QOIDA  1.  agar      burchak  OY  o'qidan  qo’yilgan ??????
bo'lsa, unda funksiya nomi o'xshashga o'zgaradi	
			2
0
xy
0	
2	
I	II
III	IV	
				
			2	
2	
III	
III	IV	
			 QOIDA  1.  agar      burchak  OY  o'qidan ??????
qo’yilgan  bo'lsa,  unda  funksiya  nomi 
o'xshashga o'zgaradi	
	


2
0
xy
0	
2
3	
I	II
III	IV	
2
	
	
	
	
2	
3	
		cos	sin		
		ctg	tg		
	
	
	
2	
2
3	
III	
III	IV	
2
	
	
	
	
2	
3	
		cos	sin		
		ctg	tg	 Qoida  2. Formulaning o'ng tomonidagi belgi 
chap tomonidagi funktsiya belgisi bilan 
aniqlanadi
0
xy
02		
	 		2sin		sin		
	
		sin		sin		
	
		tg		tg	
						2	cos		cos	
I	II
III	IV	
	
		2ctg		ctg		
2		
						2	sin		sin		
						sin	 sin	
						tg		tg	
						2	cos		cos	
I
II	
III	IV	
						2	ctg	
ctg Qoida   2.   Formulaning o'ng tomonidagi belgi 
chap tomonidagi funktsiya belgisi bilan 
aniqlanadi.2
3
0
xy
0	
I	II
III	IV	
2
 




	
	

2sin	

cos





	
	

23
cos	
	sin	





	
	

2tg	
	ctg		
	tg		

	


	
		

2
3	
ctg	
2
3	
III	
III	IV	
2
 




	
	

2sin	

cos	
	

	


	
		

2
3	
cos		sin		
	

	


	
		

2	
tg	
ctg
	tg		

	


	
		

2
3	
ctg Keltirish formulalarini yozib oling	
		
090sin	
				
0	180	cos	
				
0	270	tg	
				
0	270	sin	
				
0	90	cos	
					
0	
360	sin	
 cos	
	cos		
	ctg	
	cos		

sin

sin	
					
0	
90	sin	
					
0	
180	cos	
					
0	
270	tg	
					
0	
270	sin	
					
0	
90	cos	
					
0	
360	sin	
	cos	
	cos		
	ctg	
	cos		
	sin		
	sin	 Masala    1. Trigonometrik funktsiyalarni 
45 ° kichik burchak bilan ifodalang.	
	
168	sin		
	12	sin	12	180	sin		

123cos	
	 	33	sin	33	90	cos			

174tg	
			
	969	cos	
	 	6	6	180	tg	tg			

263tg	
	 	7	7	270	ctg	tg		
	
	20	20	360	ctg	ctg						
 
380ctg	
	
	31	sin	31	270	cos				
	168	sin			
			
12	sin	12	180	sin			

	123	cos			
			
33	sin	33	90	cos				
	
	
174	tg	
				
	
969	cos	
		
		
66180 tgtg 	
	
	
263	tg			
		
77270 ctgtg 
		
			
20	20	360	ctg	ctg									
	
380	ctg	
		
		
31sin31270cos  Masala    2.   Ifodani soddalshtiring 					
 
180sin90cos360cos3cos3					
								sin	sin	cos	3	cos	3
2 sin α	
					 	
		 180sin90cos360cos3cos3	
				
								sin	sin	cos	3	cos	3 Masala   3.   Ifodaning qiymatini toping :
2 2

cos 135°   =  cos (90 ° + 45°)
cos(180° - 45°) =   - sin 45°
- cos 45 °II
=
sin
34
=	
	

	


	
	
3
π	
3	
3	π	
sin		

	


	
	
3
π	
sin		
	
3	
 sin	-	
	
2	
3	
- III	
2
2	
	
3	
4	






3π
33 π
sin	
	

	


	
	
3
π	
sin		
	
3	
 sin	-	
	
2	
3	
- Masala    4 (В7).  Ifodani soddalshtiring 
sin 150 ° · tg225° =  	
 )45 tg(18030 180sin	
				 	tg45	 	sin30	
		1	
2
1
=
=	
2
1 =  0,5	
										)	45	 	tg(180	30	 	180	sin	
				 	tg45	 	sin30	
		1	
2
1	
2
1 Masala    4 (В7).  Ifodani soddalshtiring 
sin 150 ° · tg225° =  	
 )45 tg(18030 180sin
  tg45 sin30
 1
21
=
=	
2
1 =  0,5	
	  )45 - tg(27060 sin 90
  tg45c cos60
 1
21
=	
2
1 =  0,5=	
										)	45	 	tg(180	30	 	180	sin	
				 	tg45	 	sin30		1	
2
1	
2
1	
									)	45 -	 	tg(270	60 	sin	90	
				 	tg45	c	 	cos60		1	
2
1	
2
1 Siz darsga qanday 
tushundingiz

Birlik aylana х    V у R = 1

Trigonometrik funksiyalarini ishoralari y = sin x y x y = cos x y x y = tg x, y = ctg x y x+ + + + + +              V  V  V

Choragini belgilang 273  96   120          2    2    2 3    23  273  96   120          2    2    2 3    2 3

ctg =sin =6  3 tg 45 ° =cos 60 ° = cos 135 ° = ?21 2 1 1 3 3 6  3  2 1 2 1 3 3