logo

MA’LUMOTLARNI SARALASH

Yuklangan vaqt:

08.08.2023

Ko'chirishlar soni:

0

Hajmi:

588.767578125 KB
O’ZBEKISTON RESPUBLIKASI
OLIY VA O’RTA-MAXSUS TA’LIM VAZIRLIGI
SAMARQAND DAVLAT UNIVERSITETI
RAQAMLI TEHNOLOGIYALAR FAKULTETI
AMALIY MATEMATIKA YO’NALISHI
203-GURUH TALABASI
MELIQULOV PAHLAVON
“ ALGORITMLAR VA MA’LUMOTLAR STRUKTURASI ”  FANIDAN
“ MA’LUMOTLARNI SARALASH. SARALASHNI
BIRLASHTIRISH(SILYANIE)USULI  ”
MAVZUSIDA TAYYORLAGAN
                                                                      Tekshirdi: Nurmamatov Mehriddin
                                         
                                      
                                      SAMARQAND – 2022 KURS ISHI “ MA’LUMOTLARNI SARALASH. SARALASHNI
BIRLASHTIRISH(SILYANIE)USULI  ”
                                        
                                                       Reja:
  • .Kirish.Algoritm haqida tushuncha
  • . Birlashtirib saralash
  •  Amaliy qism
         1.   Birlashtirib saralash (Merge sort)
         2.Dastur kodi
         3.Birlashtirish algoritmi qay tarzda ishlashi haqida
   • ..Xulosa
   • . Foydalanilgan adabiyotlar
                                                                 2                                                        “Algoritm — bu dasturchilar o’zlari
                                                 nima qilayotganliklarini boshqalar  
                                             bilmasligini xohlagan paytida  
                                         ishlatadigan so’zlari” — Unanonymous.
Kirish.Algoritm haqida tushuncha
Algoritm  so’zi   al-Xorazmiyning  arifmetikaga  bag’ishlangan  asarining  dastlabki 
betidagi  “Dixit  Algoritmi”  (“dediki  al-Xorazmiy”  ning  lotincha  ifodasi)  degan 
jumlalardan  kelib  chiqqan.  Shundan  so’ng  al-Xorazmiyning  sanoq  sistemasini 
takomillashtirishga  qo’shgan  hissasi,  uning  asarlari  algoritm  tushunchasining 
kiritilishiga sabab bo’lganligi ta’kidlab o’tiladi. 
Algoritm  nima   degan  savolga,  u  asosiy  tushuncha  sifatida  qabul qilinganligidan,
uning   faqat   tavsifi   beriladi,   ya’ni   biror   maqsadga   erishishga   yoki   qandaydir     masalani
yechishga   qaratilgan   ko’rsatmalarning   (buyruqlarning)   aniq, tushunarli, chekli hamda
to’liq tizimi tushuniladi.
Algoritm tushunchasi aniq shaklda 20-asr boshlarida D. Gilbert, K. Gyodel, 
S.   Klin,   A.   Chyorch,   E.   Post,   A.   Tyuring,   N.   Viner,   A.   A.   Markov   singari   olimlarning
asarlari tufayli shakllandi.
Eng qadimiy raqamli algoritmlardan biri Yevklid algoritmi (miloddan avvalgi III 
asr)  deb  hisoblanadi  -  ikki  sonning  eng  katta  umumiy  bo'luvchisini  topish. 
     Algoritmlarning  zamonaviy  nazariyasi  nemis  matematikasi  Kurt  Gyodel  (1931) 
asarlari bilan boshlandi, ular o'zlarining rasmiy, izchil aksiomalar tizimi doirasida 
yechib bo'lmaydigan muammolar mavjudligini ko'rsatdi.
Algoritmlar  nazariyasi  bo'yicha  birinchi  fundamental  ishlar  1936-yilda  paydo 
bo'lgan.  Tyuring  mashinasi,  Post  va  Chyorch  tomonidan  λ-hisobi  taklif  etiladi. 
Ushbu mashinalar algoritmning formallashtirilgan rasmiylashtirilishi edi.
Algoritmni bajarayotgan kishi – ijrochi, asosiy algoritmni aniqlashtiruvchi algoritm 
–   yordamchi  algoritm ekanligini ham  ta’kidlab o’tish joiz. Umuman, algoritmning 5 ta
qanday   maqsadga   mo’ljallanganligidan   qat’i   nazar   uni   muvaffaqiyat   bilan   bajarish
mumkinligini aytib o’tish lozimdir.
Algoritmning bir nechta ta’rifi mavjud. Ulardan ayrimlarini keltirib o’tamiz:
–   “Algoritm   -  bu belgilaydigan cheklangan qoidalar to'plami, muayyan vazifalar 
to'plamini hal qilish bo'yicha amallar ketma -ketligi va beshta muhim xossaga ega: 
aniqlik, tushunarlilik, kiritish, chiqarish, samaradorlik”. (D. E. Knut).
–  “Algoritm   -  bu  qat'iy  belgilangan  qoidalar  asosida  bajariladigan  har  qanday 
hisoblash tizimidir, bu ma'lum bir qator bosqichlardan so'ng, aniq qo'yilgan masalani 
hal qilishga olib keladi" (A. Kolmogorov)
                                                                 3 –  “Algoritm   -  bu  har  xil  boshlang'ich  ma'lumotlardan  kerakli  natijaga  o'tadigan 
hisoblash jarayonini belgilaydigan aniq ketma-ketlik" (A. Markov).
1950-yillarda algoritm nazariyasiga o'z hissalarini Kolmogorov va Markov asarlari 
qo'shgan.  1960-1970  yillarda  algoritm  nazariyasida  tadqiqot  yo'nalishlari 
shakllandi:
1)   Algoritmlarning   klassik   nazariyasi     (rasmiy   tillar   nuqtai   nazaridan   masalalarni
shakllantirish,  yechuvchanlik  muammosi  tushunchasi,  murakkablik  sinflarini kiritish,
P = NP (?) masalasini shakllantirish, NP-ning to'liq masalalarini sinfi va uni o'rganish);
2)  Algoritmlarni asimptotik tahlil qilish nazariyasi   (algoritmning murakkabligi 
tushunchasi, algoritmlarni baholash kriteriyal ari, asimptotik baholarni olish usullari, 
xususan,  rekursiv  algoritmlar  uchun,  murakkablikni  yoki  bajarilish  vaqtini 
asimptotik tahlil qilish);
3)   Hisoblash algoritmlarini amaliy tahlil  qilish  nazariyasi   (funksiyalarning 
intervalli  tahlili,  algoritmlar  sifatining  amaliy  mezonlari,  ratsional  algoritmlarni 
tanlash metodikasi).
Algoritmning  aniq  yoki  bilvosita  turli  xil  ta'riflari  bir  qator  talablarni  keltirib 
chiqaradi:
-     algoritmda   cheklangan   miqdordagi   elementar   bajarilishi   mumkin   bo'lgan   ketma
ketlik bo'lishi kerak, ya'ni yozuvning aniqligi talabi bajarilishi kerak; 
-     algoritm   masalani   yechishda   cheklangan   sonli   bosqichlarni   bajarishi   kerak,   ya'ni
harakatlarning aniqligi talabi bajarilishi kerak;
-  barcha qabul qilingan kirish ma'lumotlari uchun algoritm bir xil bo'lishi kerak, ya'ni
universallik talabiga javob berish;
-  algoritm  qo'yilgan  vazifaga  nisbatan  to'g'ri  yechimga  olib  kelishi  kerak,  ya'ni 
to'g'rilik talabi bajarilishi kerak.
                                                   Algoritm xossalari
Algoritmning asosiy xossalari haqida quyidagilarni ta’kidlash mumkin:
1-xossa .   Diskretlilik,   ya’ni   algoritmni   chekli   sondagi   oddiy   ko’rsatmalar   ketma
ketligi shaklida ifodalash mumkin.
2-xossa .   Tushunarlilik,   ya’ni   ijrochiga   tavsiya   etilayotgan   ko’rsatmalar   uning   uchun
tushunarli   bo’lishi   shart,   aks     holda   ijrochi   oddiy   amalni   ham   bajara   olmay   qolishi
mumkin.       Har     bir     ijrochining     bajara     olishi     mumkin     bo’lgan     ko’rsatmalar     tizimi
mavjud.
3-xossa .   Aniqlik,   ya’ni   ijrochiga   berilayotgan   ko’rsatmalar   aniq   mazmunda   bo’lishi
lozim hamda faqat algoritmda ko’rsatilgan tartibda bajarilishi shart.
4-xossa .  Ommaviylik,  ya’ni  har  bir  algoritm  mazmuniga  ko’ra  bir  turdagi 
masalalarning  barchasi  uchun  yaroqli   bo’lishi  lozim.  Masalan,  ikki  oddiy  kasr 
umumiy  maxrajini  topish  algoritmi  har  qanday  kasrlar  umumiy  maxrajini  topish 
uchun ishlatiladi.
                                                                 4 5-xossa .   Natijaviylik,   ya’ni   har   bir   algoritm   chekli   sondagi   qadamlardan   so’ng
albatta natija berishi lozim.
Bu   xossalar    mohiyatini     o’rganish     va    konkret    algoritmlar    uchun     qarab     chiqish
talabalarning xossalar mazmunini bilib olishlariga yordam beradi.
                                   
 Algoritmning tasvirlash usullari
Algoritmning  tasvirlash  usullari  haqida  gapirganda  algoritmning  berilish  usullari 
xilma-xilligi  va  ular  orasida  eng  ko’p  uchraydiganlari  quyidagilar  ekanligini 
ko’rsatib o’tish joiz:
1. Algoritmning so’zlar orqali ifodalanishi.
2. Algoritmning formulalar yordamida berilishi. 
3.   Algoritmning   jadval   ko’rinishida   berilishi,   masalan,   turli   matematik   jadvallar,
loteriya yutuqlari jadvali, funksiyalar qiymatlari jadvallari bunga misol bo’ladi. 
4.   Algoritmning   dastur   shaklida   ifodalanishi,   ya’ni   algoritm   kompyuter   ijrochisiga
tushunarli bo’lgan dastur shaklida beriladi.
5.     Algoritmning     algoritmik     tilda     tasvirlanishi,     ya’ni     algoritm     bir     xil     va   aniq
ifodalash,   bajarish   uchun   qo’llanadigan   belgilash   va   qoidalar   m   ajmui   algoritmik   til
orqali  ifodalashdir. Ulardan  o’quv  o’rganish  tili  sifatida  foydalanilmoqda. Bo’lardan
Ye-praktikum yoki Ye-tili algoritm ijrochisi algoritmik tili ham mavjud.
6. Algoritmlarning grafik shaklda tasvirlanishi. Masalan, grafiklar, sxemalar ya’ni blok
-  sxema  bunga  misol  bo’la  oladi.  Blok  sxemaning  asosiy  elementlari 
quyidagilar:  oval  (ellips  shakli)-algoritm  boshlanishi  va  tugallanishi,  to’g’ri 
burchakli   to’rtburchak-qiymat   berish   yoki   tegishli   ko’rsatmalarni   bajarish.   Romb     -
shart tekshirishni belgilaydi. Uning yo’naltiruvchilari tarmoqlar bo’yicha biri ha 
ikkinchisi yo’q yo’nalishlarni beradi, parallelogramm-  ma’lumotlarni kiritish yoki 
chiqarish,  yordamchi  algoritmga  murojaat  -  parallelogramm  ikki  tomoni  chiziq, 
yo’naltiruvchi  chiziq  -  blok-sxemadagi  harakat  boshqaruvi,  nuqta-to’g’ri  chiziq 
(ikkita parallel) - qiymat berish.
Algoritmda  bajarilishi  tugallangan  amallar  ketma-ketligi  algoritm  qadami  deb 
yuritiladi. Har bir alhoxida qadamni ijro etish uchun bajarilishi kerak bo’lgan 
amallar haqidagi ko’rsatma buyruq deb aytiladi.
Algoritmlarni ko’rgazmaliroq qilib tasvirlash uchun blok-sxema, ya’ni geometrik 
usul  ko’proq  qo’llaniladi.  Algoritmning  blok-sxemasi  algoritmning  asosiy 
tuzilishining yaqqol geometrik tasviri: algoritm bloklari, ya’ni geometrik shakllar 
ko’rinishida, bloklar orasidagi aloqa esa yunaltirilgan chiziqlar bilan ko’rsatiladi. 
Chiziqlarning  yunalishi  bir  blokdan  so’ng  qaysi  blok   bajarilishini   bildiradi. 
   Algoritmlarni  ushbu  usulda  ifodalashda  vazifasi,  tutgan  o’rniga  qarab  quyidagi 
geometrik shakl(blok) lardan foydalaniladi.
   Algoritmlar  berilishi  va  ifodalanishiga  qarab:   chiziqli,  tarmoqlanuvchi  va 
                                                                 5 takrorlanuvchi turlarga bo’linadi. 
   Algoritmning  turlari  bilan  tanishtirganda,  avvalo  hech  qanday  shart 
tekshirilmaydigan  va  tartib  bilan  faqat  ketma-ket  bajariladigan  jarayonlarni 
ifodalaydigan chiziqli algoritmlar aytib o’tiladi. 
   Algoritm  xato  natijalarni  keltirib  chiqaradigan  yoki  umuman  natija  bermaydigan 
bo'lsa, xatolarni o'z ichiga oladi.
Algoritm har qanday to'g'ri kirish uchun to'g'ri natijalarni beradigan bo'lsa, xatosiz 
bo'ladi.
         Ma'lumotlarni kirish va chiqish turlari bo'yicha farqlash mumkin
- Raqamli masalalarni yechish algoritmlari (birinchi bo'lib paydo bo'ldi);
- Raqamli bo'lmagan algoritmlar.
  Birlashtirib saralash algoritmlari.
Samarali   saralash   algoritmlari.   Birlashtirib   saralash   algoritmlari.   Birlashtirib   saralashni
rekursiv   va   rekursiv   bo'lmagan   algoritmlari.   Vaqt   va   xotira   bo`yicha   murakkabliklar
tahlili. Merge prosedurasi birlashtirib saralashni asosiy prosedurasi sifatida. Birlashtirish
protsedurasi   bajarilishda   xotirani   tejash.   Tashqi   birlashtirib   saralash.   Tahlil   va
murakkablik.
Ma’lumki, inson kundalik turmushida turli - tuman ishlarni bajaradi.  Har bir ishni 
bajarishda esa bir qancha elementlarni ketma - ket amalga oshirishga to‘g‘ri keladi. 
Mana shu ketma-ketlik yozilsa, u bajariladigan ishning algoritmi bo‘ladi.
Algoritm ma’lum bir buyruqlar to‘plami bo‘lib, bajaruvchi uchun aniq ko‘rsatmalarni
o‘z ichiga mujassamlashtiradi. Ushbu buyruqlar bajaruvchiga ko‘rsatilgan maqsadga 
erishish uchun asos bo‘lishi kerak. 
Demak, qo‘yilgan masalani bajarish ma’lum ketma-ketlikda elementlarni ijro etish 
orqali erishiladi. Bunda algoritmni bajaruvchi algoritm ijrochisi hisoblanadi. 
Umuman, uni 2 guruhga ajratish mumkin:
1-guruh  algoritmlarining ijrochisi faqat inson bo‘lishi mumkin. 
2-guruh  algoritmlarining ijrochisi ham inson, ham kompyuter bo‘lishi mumkin. 
Bu guruh algoritmlari ijrochisini kompyuter zimmasiga yuklash mumkin. Buning 
uchun algoritmni kompyuter tushunadigan biror dasturlash tilida yozib, keyin uning 
xotirasiga kiritish kifoya. 
Umuman olganda ijrochi algoritmda mavjud maqsadni bilmaydi. U bevosita 
keltirilgan buyruqlarni bajaradi. Informatikada algoritmlarning ijrochisi kompyuter 
deb hisoblanadi.
                                                                 6 Shunday qilib, biz ,  algoritm deganda ,  berilgan masalani yechish uchun ma’lum 
tartib bilan bajarilishi lozim bo‘lgan chekli sondagi ko‘rsatmalar ketma - ketligini 
tushunamiz. Algoritmlarni yozish uchun qo‘llaniladigan tillar algoritmik tillar deb 
ataladi. Algoritmik tilni kompyuter ham tushunsa, u holda bu til dasturlash tili   deb 
ataladi. 
Demak, algoritmik yoki dasturlash tillari ham berilgan masalani yechish 
algoritmining yozish usullaridan biri hisoblanar ekan.    Algoritmlarni o‘rganish 
davomida biz quyidagi asosiy tushunchalar bilan tanishamiz: algoritm,  blok-sxema , 
chiziqli algoritmlar, tarmoqli algoritmlar, takrorlash jarayonlari, iteratsion jarayonlar. 
Biror masalani kompyuterda yechishda eng muhim va ma’suliyatli ishlardan biri bu 
masalani yechish algoritmini yaratish bo‘lib, bu jarayonda bajarilishi lozim bo‘lgan 
barcha bo‘lajak buyruqlar ketma-ketligi aniqlanadi. Algoritmda yo‘l qo‘yilgan 
xatoliklar hisoblash jarayonining noto‘g‘ri  bajarilishiga olib keladi ,  bu esa, o‘z 
navbatida, xato natijaga olib keladi. 
Umuman, istalgan masalaning yechimi deyilganda, masalani yechish algoritmi 
mavjudligi va ushbu algoritm natijaga erishishini ta’minlashi zarurligi tushuniladi. 
Masalalarni, ularning qo‘yilishi bo‘yicha, 4 ta sinfga ajratish mumkin.
1. Aniq ta’riflangan va yechimga erishadigan algoritmlari mavjud masalalar. Ushbu 
sinfga doir masalalar bevosita to‘g‘ridan - to‘g‘ri kompyuterda bajariluvchi 
dasturlarga aylantirilishi mumkin. 
2. Masala qo‘yilishida yoki uning yechimida noaniqliklar mavjud bo‘lib, algoritmda 
ushbu noaniqliklarni e’tiborga olish zaruriyati paydo bo‘ladi. Bu yerda asosan tashqi 
muhitning o‘zgarishi bilan algoritmning shunga moslanishi nazarda tutiladi. 
3. Bilimlarni qayta ishlash doirasida berilgan idrokiy masalalar. Bu yerda mantiqiy 
tushunchalar bilan ishlay oladigan algoritmik tillarning mavjudligi va ular asosida 
kompyuter uchun dasturlar yaratish mumkinligi nazarda tutiladi. 
4. Inson faoliyatiga bog‘liq masalalarni modellashtirishga qaratilgan bo‘lib, aniq 
yechish algoritmlari mavjud bo‘lmagan masalalar. Ya’ni inson faoliyatini ma’lum bir 
model doirasida dasturlash mumkinligi nazarda tutilgan bo‘lib, algoritm ushbu 
faoliyatni to‘liq qamrab ololmaydi, masalan, shaxmat o‘yini.
Berilgan masala algoritmini yozishning turli usullari mavjud bo‘lib, ular qatoriga so‘z
bilan ,  blok-sxema shaklida , formulalar, operatorlar yordamida, algoritmik yoki 
dasturlash tillarida yozish kabilarni kiritish mumkin. 
Endi biror usulda tuzilgan algoritmning ayrim xossalarini va ularga qo‘yilgan 
talablarni ko‘rib chiqaylik.
1) Algoritm har doim to‘liq bir qiymatlidir, ya’ni uni bir xil boshlang‘ich qiymatlar 
bilan ko‘p marotaba qo‘llash har doim bir xil natija beradi. 
                                                                 7 2) Algoritm birgina masalani yechish qoidasi bo‘lib qolmay, balki turli-tuman 
boshlang‘ich shartlar asosida ma’lum turdagi masalalar to‘plamini yechish yo‘lidir.
3) Algoritmni qo‘llash natijasida chekli qadamdan keyin natijaga erishamiz yoki 
natijaga erishish mumkin emasligi haqidagi ma’lumotga ega bo‘lamiz. 
Yuqorida keltirilgan  xossalarni umumlashtirib , algoritmlarning quyidagi asosiy 
xossalarini ta’kidlash zarur. 
1. Algoritm  boshlang‘ich qiymatli  argumentlarga ega bo‘ladi. 
Algoritmni bajarishdan maqsad bu natija olishdir, ya’ni algoritm boshlang‘ich 
qiymatlarni biror usul orqali natijaga aylantiruvchi avtomatdir. Demak, algoritmni 
qo‘yilgan masalaning har xil boshlang‘ich qiymatlari uchun qo‘llash mumkin. Lekin 
algoritmning ijrochisi inson bo‘lsa, boshlang‘ich qiymat ko‘rsatilmagan bo‘lishi  ham
mumkin ,  masalan, “qogozda kvadrat chizing”.
Har xil boshlang‘ich qiymatlar ishlatilishi mumkin bo‘lganligi sababli algoritmning 
ommaviylik  xossasi yuzaga keladi. Lekin ba’zi-bir hollarda faqatgina individual 
boshlang‘ich qiymatga mo‘ljallangan algoritm ham mavjud bo‘ladi. 
2. Algoritm ijrochiga  tushunarli  bo‘lishi lozim, ya’ni ijrochining bazasida mavjud 
bo‘lgan buyruqlar qo‘llanilishi zarur. Shu bois, algoritmni yaratish jarayonida 
ijrochining imkoniyatlari va nozik tomonlari e’tiborga olinishi darkor.
3. Algoritm cheklangan qadamlar ketma-ketligidan iborat bo‘ladi va har bir qadam 
to‘liq bajarilgandan so‘ng keyingi qadamga o‘tiladi.  Ushbu xossa algoritmning 
diskretli   xossasi deb ataladi. 
4. Algoritm chekli qadamlar bajarilgandan so‘ng tugatiladi. Ya’ni chekli qadamlardan
so‘ng algoritm natijaga erishishi kerak yoki natija olish mumkin emasligi aniqlanishi 
lozim. Ushbu xossa algoritmning  natijaviylik  xossasi deb ataladi.
5. Algoritmning har bir qadami aniq ta’riflangan bo‘lib, ko‘p ma’noli bo‘lishi 
mumkin emas. Ya’ni har bir qadamdan so‘ng keyingi qadam aniqlangan bo‘lishi yoki
algoritm tugatilishi kerak. 
Algoritmning ushbu xossasi  aniqlik  xossasi deb yuritiladi va algoritmni bevosita 
kompyuterda bajarish uchun imkon beradi. 
Ushbu xossaga binoan, bir xil boshlang‘ich qiymatlar bilan bajariladigan algoritm 
doimo bir xil natijaviy qiymatlar bilan tugallanadi. 
                                                                 8 Birlashtirib saralash (Merge sort)  
Birlashtirib saralash (Merge sort) – tartiblashning tezkor bajariladigan algoritmlaridan
biri. Ushbu tartiblash “bo’lib tashla va hukmronlik qil” prinsipining yaxshi namunasidir.
Birinchidan,   vazifa   bir   nechta   kichik   topshiriqlarga   bo'linadi.   Keyin   ushbu   vazifalar
rekursiv chaqiruv yordamida yoki to'g'ridan-to'g'ri ularning hajmi yetarlicha kichik bo'lsa
hal qilinadi. Nihoyat, ularning  y echimlari birlashtirilib, asl muammoning echimi olinadi.
Algoritmning bajarilishi.
Saralash muammosini hal qilish uchun uch bosqich quyidagicha bo’ladi:
1. Saralanadigan massiv taxminan bir xil o'lchamdagi ikki qismga bo'linadi;
2. Olingan   qismlarning   har   biri   alohida   saralanadi   (masalan,   xuddi   shu   algoritm
bo'yicha saralanadi);
3. Yarim kattalikdagi ikkita saralangan massivlar birlashtiriladi.
Bu eng mashhur saralash algoritmlaridan biri bo'lib, rekursiv algoritmlarni yaratishda
ishonchni rivojlantirishning ajoyib usuli hisoblanadi.
“Bo’lib tashla va hukmronlik qil” strategiyasi
“Bo’lib   tashla   va   hukmronlik   qil”   strategiyasi   yordamida   muammoni   qismiy
jarayonlarga   ajratamiz.   Har   bir   kichik   topshiriq   uchun   yechimga   ega   bo'lsak,   pastki
vazifalarni yechish uchun pastki vazifalardan olingan natijalarni "birlashtiramiz".
Aytaylik, biz A massivni saralashni xohladik. Kichik vazifa bu p indeksidan boshlanib,
r indeksida tugagan, A [p..r] bilan belgilangan kichik qismini ajratishdir.
“Bo’lib tashlash”   Agar q qiymati p va r orasida bo'lsa, biz A [p..r] massivni ikkita A
[p..q] va A [q + 1, r] kichik massivlarga bo'lishimiz mumkin.
“Hukmronlik qilish”.  “Hukmronlik qilish” bosqichida biz ikkala A [p..q] va A [q + 1,
r]   kichik   massivlarni   saralashga   harakat   qilamiz.   Agar   hali   ham   boshlang'ich   darajaga
yetib   bormagan   bo'lsak,   yana   ikkala   quyi   qismni   ajratib,   ularni   saralashga   harakat
qilamiz.
                                                                 9  
Birlashtirish
Birlashtirish bosqichi asosiy pog'onaga yetib borganida va biz A [p..r] massivi  uchun
ikkita tartiblangan A  [p..q]  va A [q + 1, r]  kichik massivlarni  olsak,  natijalarni  A  [p..r]
massiviga   birlashtiramiz.   Bu   ikkita   tartiblangan   A   [p..q]   va   A   [q   +   1,   r]   massivlarning
birlashmasidir.
                                       
                                                                 10                         Birlashtirib saralash algoritmi
MergeSort   funksiyasi   massivni   ketma-ket   ikki   qismga   ajratadi,   biz   1-darajali   ichki
massivda   MergeSort-ga   o'tishga   harakat   qiladigan   bosqichga   yetguncha   ya’ni   p   ==   r
bo’lguncha.
Shundan   so'ng,   birlashtirish   funktsiyasi   ishga   tushadi,   bu   tartiblangan   massivlarni
butun massiv birlashguncha katta massivlarga birlashtiradi.
1. MergeSort ( A ,  p ,  r )
2.      If  p  >  r 
3.          return ;
4.     q  =   ( p + r )/ 2 ;
5.     mergeSort ( A ,  p ,  q )
6.     mergeSort ( A ,  q + 1 ,  r )
7.     merge ( A ,  p ,  q ,  r )
Butun massivni saralash uchun MergeSort (A, 0, length (A) -1) ga murojaat qilishimiz
kerak.
Quyidagi   rasmda   ko'rsatilgandek,   birlashtirib   saralash   algoritmi   1   elementli
massivning   asosiy   holatiga   kelgunimizcha   massivni   rekursiv   ravishda   ikkiga   bo'ladi.
So'ngra   birlashtirish   funktsiyasi   saralangan   ichki   massivlarni   tanlaydi   va   butun   qatorni
asta-sekin saralash uchun ularni birlashtiradi.
 
 
Algoritmning eng muhim qismi bu "birlashtirish" bosqichidir.
Birlashish   bosqichi   -   ikkita   katta   ro'yxat   (massiv)   yaratish   uchun   ikkita   tartiblangan
ro'yxatni (massivlarni) birlashtirish bo'yicha oddiy muammoning yechimi.
                                                                 11 Algoritm   uchta   ko'rsatgichni   saqlaydi,   ikkitasi   har   biri   uchun   va   bittasi   tartiblangan
qatorning joriy indeksini saqlab qolish uchun.
 
Ikkinchi   massivda   boshqa   elementlar   qolmaganligi   va   ikkala   massiv   ham   ishga
tushirilganda   saralanganligini   bilganimiz   uchun   qolgan   massivlarni   to'g'ridan-to'g'ri
birinchi massivdan nusxalashimiz mumkin.
Birlashtirib saralash algoritmi uchun dastur kodi
#include <iostream>
using namespace std;
// Array[] ikkita ichki massivni birlashtiradi.
//Birinchi ichki massiv - Array[l..m]
//  Ikkinchi ichki massiv Array[m+1..r]
void merge(int Array[], int l, int m, int r)
{
int n1 = m - l + 1;
                                                                 12 int n2 = r - m;
// Vaqtinchalik massivlarni yaratish
int L[n1], R[n2];
// Ma'lumotlarni vaqtinchalik L[] va R[] massivlariga nusxalash
for (int i = 0; i < n1; i++)
L[i] = Array[l + i];
for (int j = 0; j < n2; j++)
R[j] = Array[m + 1 + j];
// Vaqtinchalik massivlarni yana arr [l..r] ga birlashtirish.
// Birinchi ichki massivning boshlang'ich ko'rsatkichi
int i = 0;
              // Ikkinchi kichik massivning boshlang'ich ko'rsatkichi
int j = 0;
// Birlashtirilgan ichki massivning dastlabki ko'rsatkichi
int k = l;
                  while (i < n1 && j < n2) {
if (L[i] <= R[j]) {
Array[k] = L[i];
i++;
}
else {
Array[k] = R[j];
j++;
                            }
k++;
           }
// L [] ning qolgan elementlarini nusxalash,
//agar mavjud bo'lsa
while (i < n1) {
Array[k] = L[i];
i++;
k++;
}
             // Agar mavjud bo'lsa, R [] ning
//qolgan elementlarini nusxalash
while (j < n2) {
Array[k] = R[j];
j++;
k++;
}
}
         // l chap indeks uchun,
                                                                 13 //r esa tartiblangan ichki massivning o'ng indeksidir
void mergeSort(int Array[],int l,int r){
if(l>=r){
return;//rekursiv ravishda qaytadi
}
int m =l+ (r-l)/2;
mergeSort(Array,l,m);
mergeSort(Array,m+1,r);
merge(Array,l,m,r);
}
// Massivni chop etish funksiyasi
void printArrayay(int A[], int size)
{
for (int i = 0; i < size; i++)
cout << A[i] << " ";
}
int main()
{
int Array[] = { 12, 11, 13, 5, 6, 7 };
   int Array_size = sizeof(Array) / sizeof(Array[0]);
                          cout << "Berilgan massiv \n";
             printArrayay(Array, Array_size);
                           mergeSort(Array, 0, Array_size - 1);
                        cout << "\n Tartiblangan massiv \n";
printArrayay(Array, Array_size);
       return 0;
}
                                                                 14                  Merge Sort va uning ishlash prinsipi
                                            
  “Dasturlashning eng asosiy muammosi — bu murakkablik.                                                           
Murakkablikni hal qilishning faqatgina bitta asosiy yo’li borBo’lib tashla va hukmronlik qil” — 
Bjarne Stroustrup
Merge Sort bu saralanmagan arrayni taqqoslashga asoslangan holda saralovchi 
algoritm bo’lib, uning ishlash prinsipida to’liq bo’lib tashla va hukmronlik qil g’oyasini 
uchratish mumkin. Demak, merge sort asosiy ikkita qismdan iborat:
1. Berilgan arrayni rekursiv holda teng ikkita qismlarga bo’lib chiqish. Bu qadam,
qism arraylar uzunligi 1 ga (yoki undan kichik) teng bo’lib qolguncha davom 
etadi.
2. Hosil bo’lgan arraylarni qaytib birlashtirib chiqish va bir vaqtni o’zida hosil 
bo’luvchi array saralangan bo’lishini ta’minlash.  Merge sort qanday ishlashini 
vizual tasavvur qilish uchun quyidagi rasmga e’tiboringizni qaratmoqchiman. 
                                                                 15 Unda amallar tartibi ham ko’rsatib qo’yilgan
      Ko’rib turganingizdek algoritm ishlash prinsipini tushunish uchun unchalik ham 
murakkab emas. Va yana e’tibor bergan bo’lsangiz, birinchi bo’linishdan keyingi 
arrayning chap va o’ng qismlarida asosiy array bilan bir xil amal ketmoqda, ya’ni bizning
masalamizning qism masalasi ham bosh masala bilan bir xilda ishlaydi.
Endi esa algoritmni implementatsiya qilish uchun qadamma-qadam nima qilish 
kerakligiga  o’tamiz
Merge sort algoritmi qadamlari
1. Merge Sort funksiyasiga array va uning boshlang’ich ( left ) va oxirgi nuqtalari 
( right ) beriladi.
                                                                 16 2. Arraynining o’rtasi hisoblanadi:  mid = (left + right)/2.  Bu narsa uni teng 
ikkiga bo’lish uchun kerak bo’ladi.
3. Merge sortni rekursiv holda birinchi va ikkinchi qismlar uchun chaqiriladi.
4. 2- va 3-qismlarda hosil bo’lgan arraylar birlashtirib chiqiladi.  (Array 
mavzusidagi ikkita arrayni birlashtirish masalasini ko’rib chiqing)
Algoritm ishlash tezligi  O(nlogn)  bo’lib tezligi O(n²) bo’lgan oddiy Bubble, Insertion, 
Selection Sortlardan ancha tez ishlaydi. O’zi umuman olganda, taqqoslash asosida 
ishlaydigan algortmlarning eng tez ishlash holati  O(nlogn)  bo’lishi  isbotlangan .
Merge sort turg’un saralash hisoblanadi, ya’ni saralamagan arrayda bir nechta bir xil 
elementlar kelgan bo’lsa, ularning tartibi saralangan massivda ham o’zgarib ketib 
qolmaydi.
Algoritm ishlashi uchun xotiradan qo’shimcha  O(n)  joy talab qiladi.
Bu Merge sort haqida bilishingiz kerak bo’lgan narsalar edi. Keyingi darsimizda algoritm 
implementatiyasiga to’xtalib o’tamiz.
                                                                 17 Birlashtirib saralash algortimini baholash
Birlashtirib   bilan   ichki   saralash   algoritmi   (Merge   sort)   mashhur   saralash
algoritmlaridan   biridir.   “Bo'lib   tashlash   va   hukmronlik   qilish”   usulini   qo'llaydi.
Algoritmning asosiy g'oyasi ikkita tartiblangan ketma-ketlikni birlashtirishdir. Xuddi shu
prinsip tashqi tartiblash uchun asosdir.
A
1 ,   A
2 , ...,   A
n  va  B
1 ,   B
2 , ...,   B
n  elementlari bilan o'sish tartibida saralangan ikkita massiv
bo'lsin   va   biz   xohlagan   bo'sh   C
1 ,   C
2 ,   ...,   C
2 n   massiv   mavjud.   O'sish   tartibida   A   va   B
massivlarining qiymatlari bilan bu bo’sh massivni to’ldirish lozim.
Birlashtirish   uchun   quyidagi   amallar   bajariladi:   A1   va   B1   taqqoslanadi   va
qiymatlarning pastki qismi C1 ga yoziladi. Masalan, bu A1 bo’lsin. Keyin A2 B1 bilan
taqqoslanadi   va   qiymatlarning   eng   kichigi   C2   ga   kiritiladi.   Masalan,   bu   B1   qiymati
bo’lsin.   Keyinchalik,   keyingi   bosqichda   A2   va   B2   qiymatlari   taqqoslanadi   va   shunga
o'xshash ravishda, massivlardan birining chegaralariga yetib borgunimizcha davom etadi.
Qolgan boshqa massiv C massivining oxiridan qo'shiladi.
Birlashtirib saralash odatda rekursiv ravishda amalga oshiriladi. Rekursiyaning har bir
qadamida   massiv   ikkita   ichki   massivlarga   bo'linadi,   ularning   har   biri   ham   ikkita   ichki
massivga   bo'linadi   va   hokazo.   Tartiblangan   ketma-ketlikning   uzunligi   1   ga   teng
bo'lganda   rekursiya   eng   past   chegaraga   yetadi,   bu   holda   barcha   ishlar   allaqachon
bajarilgan,   chunki   bitta   elementning   har   qanday   bunday   ketma-ketligini   saralangan   deb
hisoblash   mumkin.  Quyida  ushbu  algoritmni   amalga  oshiradigan  MergeSort   funktsiyasi
keltirilgan.
Saralangan   ketma-ketliklarning   birlashishi   yordamchi   Merge(A,   p,   q,   r)   funksiyasi
yordamida   amalga   oshiriladi,   bu   yerda   massiv,   va   p,   q   va   r   massiv   elementlarini
raqamlash indekslari bo'lib, p-q < r. Ushbu funksiya A [p ... q]  va A [q +1 ... r] kichik
massivlarning   elementlari   tartiblangan   deb   taxmin   qiladi.   U   ushbu   ikkita   kichik
masshtabni   bitta   tartiblangan   holda   birlashtiradi,   uning   elementlari   A   massivning   joriy
elementlarini almashtiradi [p ... r].
Massivning dastlabki ko’rinishi
6 19 3 8 92 15 1 9
Saralash qadamlari
6 19 3 8 92 15 1 9
6 19 3 8 92 15 1 9
6 19 3 8 92 15 1 9
6 19 3 8 15 92 1 9
3 6 8 19 1 9 15 92
                                                                 18 Saralash funksiyasi kodi
void MergeSort (int* x, int first, int last) 
{ 
if (first < last) 
{
int split = (first + last) / 2;
MergeSort (x, first, split);
MergeSort (x, split + 1, last);
Merge (x, first, split, last);
}
}
Massivning   uzunligi   1dan   katta   bo'lsa,   uning   o'rtasi   hisoblanadi   (split   o'zgaruvchi),
so'ngra  chap  va o'ng  tomonlar  uchun  ikkita  rekursiv  chaqiruv  boshlanadi,  ular  funksiya
ushbu misoliga qaytganda, ular bog’lanadigan Merge funksiyasi:
void Merge (int* x, int first, int split, int last) { int pos1 = first, pos2 = split + 1, pos3 =
0; int* temp = new int [last — first + 1]; while (pos1 <= split && pos2 <= last) {
if (x [pos1] < x [pos2])
temp [pos3++] = x [pos1++];
else
temp [pos3++] = x [pos2++];
}
while (pos2 <= last)
temp [pos3++] = x [pos2++]; while (pos1 <= split)
temp [pos3++] = x [pos1++];
for (int i = 0; i < last — first + 1; ++i)
x [first + i] = temp [i];
}
Algoritmning murakkabligini taxmin qilaylik. Har qanday rekursiv funktsiya chaqiruvi
daraxtga   o'xshaydi   (Izoh:   “Daraxtlar”   haqida   keyingi   ma’ruzalarda   to’xtalib   o’tiladi).
Bunday daraxtni rekursion daraxt deb ham atashadi. Daraxtning har bir darajasi bir yoki
bir   nechta   funktsiya   chaqiruvlarini   aks   ettiradi.   Shoxlari   bo'lmagan   daraxt   tugunlari
rekursiyani   tugatadigan   funktsiya   chaqiruvlarini   anglatadi.   Birlashtirish   tartibida
daraxtning   balandligi   log
2 n   ga   teng,   chunki   har   bir   qadamda   boshlang’ich   massiv   n/2
uzunlikdagi   ikkita   ichki   massivga   bo'linadi.   Ajratishdan   so'ng,   birlashtirish   operatsiyasi
amalga   oshiriladi.   Birlashtirish   jarayoni   n   taqqoslashni,   navbati   bilan   log n   marta,   ya'ni
daraxtning   har   bir   darajasi   uchun   1   marta   takrorlashni   talab   qiladi.   Keyin   algortim
asimptotikasi 
                                                                 19 saralash funksiyasini birlashtirish
Yuqoridagi kodni massivlarni iloji boricha uzoqroqqa bo'ladigan rekursiv funksiya 
sifatida formatlaymiz, parametrlari birinchi chaqiruvda butun massivga, ikkinchi va 
uchinchi chaqiruvlarda uning yarmiga va hokazo.
private   void   SortUnsorted ( int [] a,  int  lo,  int  hi)  {
     if  (hi <= lo)
         return ;
     int  mid = lo + (hi - lo) /  2 ;
    SortUnsorted(a, lo, mid);
    SortUnsorted(a, mid +  1 , hi);
     int [] buf = Arrays.copyOf(a, a.length);
     for  ( int  k = lo; k <= hi; k++)
        buf[k] = a[k];
     int  i = lo, j = mid +  1 ;
     for  ( int  k = lo; k <= hi; k++) {
         if  (i > mid) {
            a[k] = buf[j];
            j++;
        }  else   if  (j > hi) {
            a[k] = buf[i];
            i++;
        }  else   if  (buf[j] < buf[i]) {
            a[k] = buf[j];
            j++;
        }  else  {
            a[k] = buf[i];
            i++;
        }
    }
                                                                 20 }
Oddiy boshlang'ich o'ta murakkab compliyator. Ikki tartiblangan massivni birlashtirish
eng oddiy kod yordamida amalga oshiriladi (variant eng samarali emas, lekin u 
siznikidan tezroq ishlaydi):
while (i < a1.length && j < a2.length)
 {
  a3[k++] = a1[i] < a2[j] ? a1[i++] : a2[j++];
}
if (i< a1.length) 
{
  arraycopy(a1, i, a3, k, a1.length - i);
}  else   if (j< a2.length)
 {
  arraycopy(a2, j, a3, k, a2.length - j);
}
Minimal o'lchamga bo'linish faqat elementlarga ketma-ket kirish imkoniyati bilan 
ro'yxatlarni saralash uchun mantiqiydir. Boshqa tomondan, massivlar elementlarga 
to'g'ridan-to'g'ri kirish bilan samarali tartiblash algoritmini qo'llash uchun blok hajmi 
etarlicha kichik bo'lgunga qadar aniq bo'linishi kerak. Xotiraga to'liq mos keladigan 
massivlar uchun birlashma tartiblashdan foydalanish, xususan, ushbu algoritmni 
to'liq noto'g'ri tushunish va umuman algoritmlar nazariyasining minimal asoslarini 
ham to'liq bilmaslikning namoyishidir.
                                                                 21 Birlashtirish saralash - ro'yxatlarni (yoki elementlariga faqat ketma-ket kirish mumkin 
bo'lgan boshqa ma'lumotlar tuzilmalarini, masalan, oqimlarni) ma'lum bir tartibda 
tartibga soluvchi tartiblash algoritmi. Ushbu saralash "bo'l va zabt et" tamoyilidan 
foydalanishning yaxshi namunasidir. Birinchidan, vazifa bir nechta kichik kichik 
vazifalarga bo'linadi. Keyinchalik bu vazifalar rekursiv qo'ng'iroq bilan yoki ularning 
hajmi etarlicha kichik bo'lsa, to'g'ridan-to'g'ri hal qilinadi. Nihoyat, ularning yechimlari 
birlashtirilib, dastlabki masala yechimi olinadi.
Birlashtirib saralash algoritmi[tahrirlash | kodni tahrirlash]
Tasodifiy nuqtalarni saralash misolida algoritmning harakati.
Saralash muammosini hal qilish uchun ushbu uchta qadam quyidagicha 
ko'rinadi:
1. Saralangan massiv taxminan bir xil o'lchamdagi ikki qismga bo'linadi;
2. Olingan qismlarning har biri alohida, masalan, bir xil algoritm bo'yicha 
tartiblanadi;
3. Ikki yarim o'lchamdagi tartiblangan massiv bittaga birlashtiriladi.
1.1. - 2.1. Vazifani kichikroqlarga rekursiv bo'lish massivning o'lchami bittaga 
yetguncha sodir bo'ladi (uzunligi 1 bo'lgan har qanday massivni tartiblangan deb
 hisoblash mumkin). 
Ikki tartiblangan massivni birlashtirishning asosiy g'oyasini quyidagi misol bilan 
tushuntirish mumkin. Faraz qilaylik, bizda ortib boruvchi tartibda 
tartiblangan ikkita pastki qator bor. Keyin:
3.2. Ikki pastki qatorni uchinchi massivga birlashtirish.
Har bir qadamda biz pastki massivlarning dastlabki ikkita elementidan kichigini 
olamiz va uni hosil bo'lgan massivga yozamiz. Olingan massiv va element 
olingan pastki massivning elementlari sonining hisoblagichlari 1 ga 
oshiriladi.
3.3. Qolganlarning "ilovasi".
massivning qolgan barcha elementlarini qo'shamiz.
C++ da saralash:
  /**
  * Rekursiv birlashma tartiblash yordamida massivni 
saralaydi
  * yuqoriga - saralanadigan massivga ko'rsatgich
                                                                 22   * pastga - bufer sifatida ishlatiladigan kamida 
"yuqoriga" bilan bir xil o'lchamdagi massivga ko'rsatgich
  * chap - massivning chap chegarasi, massivni boshidan 
saralash uchun 0 dan o'ting
  * o'ng - massivning o'ng chegarasi, massiv uzunligini 
o'tkazing - 1 massivni oxirgi elementga saralash uchun
  * qaytaradi: tartiblangan massivga ko'rsatgich. Ushbu 
amalga oshirishning tabiati tufayli
  * massivning tartiblangan versiyasi "yuqoriga" yoki 
tugashi mumkin 
  **/
Qolganini C++ ga tilda “biriktirmasdan” takomillashtirilgan birlashma algoritmi 
uchun psevdokod :
L = *In1;
R = *In2;
if( L <= R ) {
 *t++ = L;
 In1++;
}
if( L >= R ) {
 *t++ = R;
 In2++;
}
If(L >= R) chekini olib tashlash orqali tekshirishlar sonini ikki baravar kamaytirish 
mumkin. Bunday holda, agar L va R teng bo'lsa, L birinchi iteratsiyada Out ga, R esa 
ikkinchisiga yoziladi. Agar asl massivda qolgan elementlardan ustun bo'lgan takroriy 
elementlar bo'lmasa, ushbu parametr samarali ishlaydi.
Qolganini C++-ga o'xshash tilda "biriktirmasdan" qisqartirilgan birlashma algoritmi 
uchun psevdokod:
L = *In1;
R = *In2;
if( L <= R ) {
 *t++ = L;
 In1++;
} else {
 *t++ = R;
 In2++;
}
                                                                 23 L va R o'zgaruvchilarga ikkita o'tkazish dasturdagi ba'zi yozuvlarni soddalashtirish, bu 
ta'lim vositalari uchun foydali bo'lishi mumkin, ammo haqiqiy dasturlarda ularni olib 
tashlashumkin, bu esa dastur kodini yuklash. , siz tezroq dastur kodini yanada chiqadigan
uchlik operatordan aniqlash mumkin .
Qolganini C++-ga o'xshash tilda "biriktirmasdan" yanada kengaytirilgan 
birlashma algoritmi uchun psevdokod:
*t++ = *In1 <= *In2 ? In1++: In2++;
Algoritmning ishlash vaqti O(n * log n) bo'lib, yomon holatlarda buzilish bo'lmasa, bu 
tezkor tartiblashning og'riqli nuqtasidir (shuningdek, O(n * log n) tartibli algoritm), lekin 
faqat o'rtacha holat uchun ). Xotira iste'moli tez saralashdan ko'ra ko'proq, xotirani 
taqsimlash ancha qulayroq - xotiraning bir hududini boshidanoq ajratish mumkin, keyin 
esa ajratmaslik mumkin.
Ommabop dastur tartiblangan massivga teng va rekursiyalarga ega bo'lmagan bir 
martalik ajratilgan vaqtinchalik xotira buferini talab qiladi. Amalga oshirish bosqichlari:
1. InputArray = tartiblanuvchi massiv, OutputArray = vaqtinchalik bufer;
2. InputArray[N * MIN_CHUNK_SIZE..(N + 1) * MIN_CHUNK_SIZE] kirish 
massivining har bir segmentida ba'zi yordamchi tartiblash algoritmi bajariladi, masalan, 
Shell sort yoki tez saralash;
3. ChunkSize = MIN_CHUNK_SIZE o‘rnating;
4. Ikki segment InputArray[N * ChunkSize..(N + 1) * ChunkSize] va InputArray[(N + 
1) * ChunkSize..(N + 2) * ChunkSize] navbat bilan chapga va o‘ngga qadam qo‘yish 
orqali birlashtiriladi (yuqoriga qarang). ), natija OutputArray[N * ChunkSize..(N + 2) * 
ChunkSize] ga joylashtiriladi va massiv oxiriga yetguncha hamma N uchun shunday 
davom etadi;
5. ChunkSize ikki barobar oshiriladi;
6. agar ChunkSize massiv hajmi >= ga aylangan bo‘lsa, u holda natija OutputArray-da 
bo‘ladi, u (quyida tasvirlangan almashtirishlar tufayli) tartiblanuvchi massiv yoki 
vaqtinchalik bufer bo‘ladi, ikkinchi holatda u to‘liq tartiblanuvchiga ko‘chiriladi. massiv;
7. Aks holda, InputArray va OutputArray ko'rsatkichlarni almashtirish orqali 
almashtiriladi va hamma narsa 4-banddan boshlab takrorlanadi.
Ushbu dastur, shuningdek, saralanadigan massivni va vaqtinchalik buferni disk 
fayllariga joylashtirishni qo'llab-quvvatlaydi, bu esa uni katta hajmdagi ma'lumotlarni 
saralash uchun mos qiladi. ORDER BY ni MySQL da mos indeks bo'lmaganda amalga 
oshirish aynan shunday ishlaydi (manba: MySQL manba kodidagi filesort.cc).
Psevdokodda oddiy ikki tomonlama birlashma algoritmini amalga oshirishga 
misol: function  mergesort(m):
    
                                                                 24 Birlashtirish tartiblash algoritmi
algoritm,   birlashtirish   tartiblash,   Birlashtirish   saralash   algoritmi,
saralash
Birlashtirish tartibi - bu kompyuter dasturlashda bo'lish va zabt etish
algoritmining bir turi. Bu eng mashhur saralash algoritmlaridan biri va
rekursiv   algoritmlarni   yaratishda   ishonchni   mustahkamlashning   ajoyib
usuli.
Tarkibi
Birlashtirish tartiblash algoritmi
1.. Birlashtirish saralash birlashtirish qadami
2.. Birlashtirish algoritmi uchun kod yozish
3. Funktsiyani bosqichma-bosqich birlashtirish
  1-bosqich . Saralash uchun pastki qatorlarning dublikat nusxalarini yarating
   2-bosqich : pastki massivlar va asosiy massivning joriy indeksini saqlash
  3-bosqich : L yoki M ning oxiriga yetgunimizcha, L va M elementlardan kattasi 
tanlanadi va A nuqtada to‘g‘ri joyga joylashtiriladi [p..r]
4-bosqich : L yoki M dagi elementlar tugagach, qolgan elementlar A [p..r] ga 
joylashtirilishi kerak.
Agar q p va r orasidagi oraliq nuqta bo'lsa, u holda biz A [p..r] pastki massivni ikkita 
massivga bo'lishimiz mumkin. A [p..q] va A [q + 1, r]. 
                                                                 25 Qoida
Fath bosqichida biz ikkala pastki qatorlarni A[p..q] va A[q + 1, r] saralashga harakat
qilamiz. Agar biz hali ham asosiy holatga etib bormagan bo'lsak, biz ikkala pastki qatorni
yana ajratib, ularni saralaymiz.
 
Qachonki zabt etuvchi qadam asosiy bosqichga yetib, A[p..r] massiv uchun ikkita tartiblangan pastki
massivlar A[p..q] va A[q + 1, r] ni olamiz,  natijalarni  birlashtirib,  tartiblangan A massivini yaratamiz.
A[p..q] va A[q + 1, r] ikkita tartiblangan pastki massivlarning [p. .r]
Algorit m birlasht irish t art ibi
MergeSort   funktsiyasi   massivni   1   o'lchamdagi   kichik   massivda   MergeSort   qilishga
harakat qiladigan bosqichga etgunimizcha qayta-qayta ikkiga bo'ladi, ya'ni. p == r.
Shundan so'ng, butun massiv birlashtirilgunga qadar tartiblangan massivlarni kattaroq
massivlarga birlashtirgan birlashtirish funksiyasi ishga tushadi.
MergeSort ( A ,  p ,  r )
1.      If  p  >  r 
2.          return ;
3.     q  =   ( p + r )/ 2 ;
4.     mergeSort ( A ,  p ,  q )
5.     mergeSort ( A ,  q + 1 ,  r )
6.     merge ( A ,  p ,  q ,  r )
Butun massivni saralash uchun MergeSort(A, 0, length(A)-1) ni chaqirishimiz kerak.
Quyidagi rasmda ko'rsatilganidek, birlashma tartiblash algoritmi 1 elementli 
massivning asosiy registriga yetguncha massivni rekursiv ravishda ikkiga bo'ladi. Keyin 
birlashtirish funksiyasi tartiblangan pastki qatorlarni tanlaydi va butun massivni 
bosqichma-bosqich saralash uchun ularni birlashtiradi.
Har bir rekursiv algoritm asosiy holatga va asosiy holatlar natijalarini birlashtirish 
qobiliyatiga bog'liq. birlashtirish tartibi bundan mustasno emas. Algoritmning eng muhim
qismi "birlashtirish" bosqichidir.
Birlashtirish bosqichi bitta katta tartiblangan ro'yxatni (massiv) yaratish uchun ikkita 
tartiblangan ro'yxatni (massivlarni) birlashtirishning oddiy muammosini hal qilishdir.
Algoritm ikkita massivning har biri uchun va oxirgi tartiblangan massivning joriy 
indeksini saqlash uchun bittadan uchta ko'rsatgichni saqlaydi. Ikkinchi massivda boshqa 
elementlar qolmagani va biz ikkala massiv ishga tushganda tartiblanganligini bilamiz, 
qolgan elementlarni birinchi massivdan to‘g‘ridan-to‘g‘ri nusxalashimiz mumkin.
Birlasht irish algorit mi uchun k odni y ozish
                                                                 26 Yuqorida tavsiflangan birlashtirish bosqichi va biz birlashma tartiblash uchun 
foydalanadigan qadam o'rtasidagi sezilarli farq shundaki, birlashtirish funktsiyasi faqat 
ketma-ket pastki qatorlarda amalga oshiriladi.
Shuning uchun bizga faqat massiv, birinchi pozitsiya, birinchi pastki qatorning oxirgi 
indeksi (ikkinchi pastki qatorning birinchi indeksini hisoblashimiz mumkin) va ikkinchi 
pastki qatorning oxirgi indeksi kerak.
Bizning vazifamiz A[p..q] va A[q + 1..r] ikkita pastki massivlarni birlashtirib, 
tartiblangan A[p..r] massivini yaratishdir. Shunday qilib, A, p, q va r funktsiyasi uchun 
kirish ma'lumotlari
Birlashtirish funktsiyasi quyidagicha ishlaydi:
1. 1. L ← A [p..q] va M ← A [q + 1..r] kichik massivlarning nusxalarini 
yaratiladi
2.  i, j va k uchta ko‘rsatkichni yaratiladi
3.  i 1 dan boshlab joriy L indeksini saqlaydi
4.  j 1 dan boshlab M ning joriy indeksini saqlaydi
5.  k p dan boshlab A [p..q] ning joriy indeksini saqlaydi
6.  L yoki M ning oxiriga yetgunimizcha, L va M dan kattaroq elementlarni 
tanlanadiva ularni A[p..q] dagi to‘g‘ri joyga qo‘ying.L yoki M dagi elementlar tugagach, 
qolgan elementlarni olib, A [p..q] ga qo‘ying.
7. Kodda u shunday ko'rinadi:
Dastur kodi ko’rinishi:
1. void  merge ( int  A [],   int  p ,   int  q ,   int  r )
2. {
3.      int  n1  =  q  -  p  +   1 ;
4.      int  n2  =   r  -  q ;
5.  
6.      int  L [ n1 ],  M [ n2 ];
7.  
8.      for   ( i  =   0 ;  i  <  n1 ;  i ++)
9.         L [ i ]   =  A [ p  +  i ];
10.      for   ( j  =   0 ;  j  <  n2 ;  j ++)
11.         M [ j ]   =  A [ q  +   1   +  j ];
12.  
13.      /* Ichki massivlar va asosiy massivning joriy indeksini saqlang */
14.      int  i ,  j ,  k ;
15.     i  =   0 ;  
16.     j  =   0 ;  
17.     k  =  p ;  
18.  
19.  
20.      /* L yoki M ning oxiriga yetgunimizcha, L va M elementlardan 
kattarog‘ini tanlang va ularni A [p..r] nuqtasida to‘g‘ri joyga qo‘ying*/
21.      while   ( i  <  n1  &&  j  <  n2 )
22.      {
23.          if   ( L [ i ]   <=  M [ j ])
24.          {
25.             arr [ k ]   =  L [ i ];
26.             i ++;
                                                                 27 27.          }
28.          else
29.          {
30.             arr [ k ]   =  M [ j ];
31.             j ++;
32.          }
33.         k ++;
34.      }
35.  
36.      /* L yoki M dagi elementlar tugagach, qolgan elementlarni olib, A 
[p..r] ga qo‘ying*/
37.      while   ( i  <  n1 )
38.      {
39.         A [ k ]   =  L [ i ];
40.         i ++;
41.         k ++;
42.      }
43.  
44.      while   ( j  <  n2 )
45.      {
46.         A [ k ]   =  M [ j ];
47.         j ++;
48.         k ++;
49.      }
50. }
Funktsiyani bosqichma-bosqich birlashtirish
1-qadam: Saralash uchun past k i qat orlarning dublik at  nusxalarini 
y arat ing  
1.      n1  =   4   -   1   +   1   =   4 ;
2.     n2  =    6   -   4   =   2 ;
3.  
4.      int  L [ 4 ],  M [ 2 ];
5.  
6.      for   ( i  =   0 ;  i  <   4 ;  i ++)
7.         L [ i ]   =  A [ p  +  i ];
8.      /* L[0,1,2,3] = A[1,2,3,4] = [1,5,10,12] */
9.  
10.      for   ( j  =   0 ;  j  <   2 ;  j ++)
11.         M [ j ]   =  A [ q  +   1   +  j ];
12.      /* M[0,1,2,3] = A[5,6] = [6,9]
2-qadam: Kichik  massiv lar v a asosiy  massiv ning joriy  indek sini 
saqlash
  1. int  i ,  j ,  k ;
  2.   i  =   0 ;  
  3.   j  =   0 ;  
   4.k  =  p ;  
                                                                 28 3-qadam: L y ok i M ning oxiriga y et gunimizcha, L v a M 
element laridan k at t asi t anlanadi v a A nuqt ada t o‘g‘ri joy ga 
joy lasht iriladi [p..r]
1.   while   ( i  <  n1  &&  j  <  n2 )   {  
2.          if   ( L [ i ]   <=  M [ j ])   {  
3.             A [ k ]   =  L [ i ];  i ++;  
4.          }  
5.          else   {  
6.             A [ k ]   =  M [ j ];  
7.             j ++;  
8.          }  
9.         k ++;  
10.      }
4-qadam: L y ok i M dagi element lar t ugagach, qolgan element lar A 
[p..r] ga joy lasht irilishi k erak .
1. /* Biz oldingi sikldan chiqdik, chunki j <n2 ishlamayapti */     
2. while   ( i  <  n1 )
3.      {
4.         A [ k ]   =  L [ i ];
5.         i ++;
6.         k ++;
7.      }
1. 1. /* Oldingi sikldan chiqdik, chunki i <n1 ishlamayapti */  
2.      while   ( j  <  n2 )
3.      {
4.         A [ k ]   =  M [ j ];
5.         j ++;
6.         k ++;
7.      }
8. }
Biz   yuqorida   keltirilgan   qadamlardan   funksiyani   bosqichma - bosqich   birlashtirishni
ko ’ rib   chiqishimiz   mumkin :   avvalo   saralash   pastki   qatorlarining   dublikat   nusxalarini
yaratib   oldik   kkeyingqadamimizda   kichik   va   joriy   massiv   indeksini   aniqlab   oldik .
Birinchi   qadamda   for   sikl   operatori   va   massivdan   foydalangan   bo’lsak.   Keyingi
qadamda   bir   nuqta   tanlanib   olinib   boshiga   tenglashtiriladi   ya’ni   [p..r]   oraliqda   bo’lishi
mumkin   biz   bunda   while   oparatoriga   masofa   belgilab   olamiz   i   va   j   lar   orqali   va   yana
shart   oparatoriga   murojat   qilamiz   va   so’nggi   qadamda   elementlardan   birortasi   qolmasa
[p..r]ga joylashtirishimiz mumkin.
                                                                 29 Xulosa    :      
                Gapimizni   texnika   asrida   yashayotganimizdan   boshlasak   texnika-texnalogiyalar
hayotimizga izchillik va shiddat bilan kirib keldiva hayotning ma’lum bir qismiga aylanib
ulgurdi. Endilikda har bir soha vakillari ishlarini osonlashtirish va sifatli bo’lishi uchun o’z
yumushlarini   texnika   va   texnalogiyalar   bilan  baham   ko’rishyapti,bu   normal   holat   chunki
yetarli  sabablar  mavjud. Bu texnika texnalogiyalar  esa  ma’lum bir  algoritmlardan tashkil
topgan   bo’ladi,   algoritm   tushunchasiga   yuqorida   to’xtalib   o’tgan   edik.   Albatta   bu
texnalogiyalar   ma’lum   bir   tartib   qoidalarga   bo’ysungan   holda   ishlaydi   va   biz   buni
“algoritm”   deb   ataymiz.   Demak   biz   texnalogiyalarga   dasturchi   nuqtai   nazaridan
qaraydigan bo’lsak algoritmlarni bilishimiz, tushinishimiz va foydalanaolishimiz judayam
muhum.   Algoritmlash   ham   o’z   vazifasiga   ko’ra   turlanadi.   Yuqoridagi   ma’lumotlardan
kelib   chiqib   aytadigan   bo’lsak   algoritmlarni   ma’lum   bir   turlarlarga   bo’linishini   bilib
oldingiz.   Ularni   odatda   asosiy   3   ta   guruhga   bo’lib   o’rganiladi   va   tavsiflanadi.   Demak,
bular:   chiziqli,   tarmoqlanuvchi   va   takrorlanuvchi   algoritmalardir.   Yuqoridagi   dastur
kodlarini   taxlil   qiladigan   bo’lsak   bu   dasturlarda   uchala   guruh   algoritmlarni   ifodalovchi
operatorlar   ishtirok   etgan.   Shunday   ekan   bu   tushuncha   murakkab   ko’rinishdagi   algortim
hisoblanadi   va   bunda   uchala   guruhga   tegishli   algoritm   operatorlaridan   foydalaniladi.
Algoritmlarni   muhim   jihatlaridan   ular   qat’iy   btartib   asosida   ishlaydi   va   sizning
uslubingizga   tayanadi,xo’p   bizga   birlashtirish   saralash   algoritmi   nima   uchun   kerak?
Albatta, odatda bir masalaga bir necha yechim bo’ladi. Shundan kelib chiqib dasturlashda
ham   bir   masala   uchun   bir   qancha   yechimlar   taklif   etish   mumkin.   Ammo,   bizga   eng
samarador yechim bo’lgani hamma uchun yaxshi hisoblanadi. Foydalanauvchi uchun ham,
texnik vositalar uchun ham vatqdan yutish asosiy urg’u beriladigan omildir. Xotira hozirgi
vaqtda   dolzarb   bo’lmasada   ham   xotira   ham   vaqt   tejalishiga   erishish   eng   maqbul   yechim
hisoblanadi.   Aynan   shu   muammolarni(vaqt   tejalishi)   samarali   hal   etish   uchun
loyhalashtiriladi.  Va saralash algorimlari orasida shu jihatlari bilan ajralib turadi. Masalan
bir   xil   yo’nalishda   algoritmlar   sizda   mavjud   bo’lsa   siz   asosan   xotiradan   va   vaqtdan
yutadiganini tanlaysiz.
                                                                 30 Demak,   so’ngi   so’z   o’rnida   shularni   aytishim   mumkinki,   birlashtirish   algoritmini
yaxshilab   o’rganishimiz   kerak   o’zlashtirishimiz,   mustaqil   ravishda   algoritmlar   tuzaolish
ko’nikmasini   o’zimizda   shakillantirishimiz   va   buni   amalyotda   qo’llay   olishimiz   bizni
maqsadga yetishimiza judayam asqotadi deb o’ylayman. Bu kurs ishimdan kimdir manfaat
ko’rsa   man   faqat   bundan   xursand   bo‘laman   va   mehnatim   ham   zoya   ketmagan   bo’ladi.
Hech qachon bilim olishdan to’xtamang .
Foydalanilgan adabiyotlar:
1. M.O‘. ASHUROV, SH.A.SATTAROVA, SH.U.USMONQULOV,  
“ALGORITMLAR” ,  «Fan va texnologiya» nashriyoti, 2018.
2. H.To’rayev,“Kombinatorika va graflar nazariyasi”, “Ilm ziyo”, 2009 ,
3. Akbaraliyev B.B., Yusupova Z.Dj.  ,  “MA LUMOTLAR TUZILMASI VA ‟
ALGORITMLAR”, Toshkent 2013
4. Toirov Sh.A., Raximov R.T., Karimov M.M ,” “ALGORITMGA KIRISH” 
fanidan laboratoriya ishlarini bajarish bo’yicha USLUBIY KO’RSATMA”, 
Samarqand 2015,
5. Xayitmatov O’.T., Inogomjonov E.E., Sharipov B.A., Ro’zmetova N., 
Rahimboboeva D,” MA'LUMOTLAR TUZILMASI VA ALGORITMLARI”, 
Toshkent – 2011
6. Л.И.Домнин, “ЭЛИМЕНТЫ ТЕОРИИ ГРАФОВ” ,  “ Пенза Издательство 
Пензенского государственного университета“ ,2007
7. Никлаус Вирт ,”Алгоритмы и структуры данных Новая версия для 
Оберона + CD “,  Москва, 2010.
Foydalanilgan internet saytlar:
1) https://kursovik.com/programming/320372.html   
2) http://aliev.me/runestone/Graphs/PrimsSpanningTreeAlgorithm.html   
                                                                 31 3) http://www.hpcc.unn.ru/?dir=836   
4) https://brestprog.by/topics/mst/   
5)       wikipedia
6) https://evileg.com/ru/post/524/   
7) http://www.mkurnosov.net/   
                                                                 32

O’ZBEKISTON RESPUBLIKASI OLIY VA O’RTA-MAXSUS TA’LIM VAZIRLIGI SAMARQAND DAVLAT UNIVERSITETI RAQAMLI TEHNOLOGIYALAR FAKULTETI AMALIY MATEMATIKA YO’NALISHI 203-GURUH TALABASI MELIQULOV PAHLAVON “ ALGORITMLAR VA MA’LUMOTLAR STRUKTURASI ” FANIDAN “ MA’LUMOTLARNI SARALASH. SARALASHNI BIRLASHTIRISH(SILYANIE)USULI ” MAVZUSIDA TAYYORLAGAN Tekshirdi: Nurmamatov Mehriddin SAMARQAND – 2022 KURS ISHI

“ MA’LUMOTLARNI SARALASH. SARALASHNI BIRLASHTIRISH(SILYANIE)USULI ” Reja: • .Kirish.Algoritm haqida tushuncha • . Birlashtirib saralash • Amaliy qism 1. Birlashtirib saralash (Merge sort) 2.Dastur kodi 3.Birlashtirish algoritmi qay tarzda ishlashi haqida • ..Xulosa • . Foydalanilgan adabiyotlar 2

“Algoritm — bu dasturchilar o’zlari nima qilayotganliklarini boshqalar bilmasligini xohlagan paytida ishlatadigan so’zlari” — Unanonymous. Kirish.Algoritm haqida tushuncha Algoritm so’zi al-Xorazmiyning arifmetikaga bag’ishlangan asarining dastlabki betidagi “Dixit Algoritmi” (“dediki al-Xorazmiy” ning lotincha ifodasi) degan jumlalardan kelib chiqqan. Shundan so’ng al-Xorazmiyning sanoq sistemasini takomillashtirishga qo’shgan hissasi, uning asarlari algoritm tushunchasining kiritilishiga sabab bo’lganligi ta’kidlab o’tiladi. Algoritm nima degan savolga, u asosiy tushuncha sifatida qabul qilinganligidan, uning faqat tavsifi beriladi, ya’ni biror maqsadga erishishga yoki qandaydir masalani yechishga qaratilgan ko’rsatmalarning (buyruqlarning) aniq, tushunarli, chekli hamda to’liq tizimi tushuniladi. Algoritm tushunchasi aniq shaklda 20-asr boshlarida D. Gilbert, K. Gyodel, S. Klin, A. Chyorch, E. Post, A. Tyuring, N. Viner, A. A. Markov singari olimlarning asarlari tufayli shakllandi. Eng qadimiy raqamli algoritmlardan biri Yevklid algoritmi (miloddan avvalgi III asr) deb hisoblanadi - ikki sonning eng katta umumiy bo'luvchisini topish. Algoritmlarning zamonaviy nazariyasi nemis matematikasi Kurt Gyodel (1931) asarlari bilan boshlandi, ular o'zlarining rasmiy, izchil aksiomalar tizimi doirasida yechib bo'lmaydigan muammolar mavjudligini ko'rsatdi. Algoritmlar nazariyasi bo'yicha birinchi fundamental ishlar 1936-yilda paydo bo'lgan. Tyuring mashinasi, Post va Chyorch tomonidan λ-hisobi taklif etiladi. Ushbu mashinalar algoritmning formallashtirilgan rasmiylashtirilishi edi. Algoritmni bajarayotgan kishi – ijrochi, asosiy algoritmni aniqlashtiruvchi algoritm – yordamchi algoritm ekanligini ham ta’kidlab o’tish joiz. Umuman, algoritmning 5 ta qanday maqsadga mo’ljallanganligidan qat’i nazar uni muvaffaqiyat bilan bajarish mumkinligini aytib o’tish lozimdir. Algoritmning bir nechta ta’rifi mavjud. Ulardan ayrimlarini keltirib o’tamiz: – “Algoritm - bu belgilaydigan cheklangan qoidalar to'plami, muayyan vazifalar to'plamini hal qilish bo'yicha amallar ketma -ketligi va beshta muhim xossaga ega: aniqlik, tushunarlilik, kiritish, chiqarish, samaradorlik”. (D. E. Knut). – “Algoritm - bu qat'iy belgilangan qoidalar asosida bajariladigan har qanday hisoblash tizimidir, bu ma'lum bir qator bosqichlardan so'ng, aniq qo'yilgan masalani hal qilishga olib keladi" (A. Kolmogorov) 3

– “Algoritm - bu har xil boshlang'ich ma'lumotlardan kerakli natijaga o'tadigan hisoblash jarayonini belgilaydigan aniq ketma-ketlik" (A. Markov). 1950-yillarda algoritm nazariyasiga o'z hissalarini Kolmogorov va Markov asarlari qo'shgan. 1960-1970 yillarda algoritm nazariyasida tadqiqot yo'nalishlari shakllandi: 1) Algoritmlarning klassik nazariyasi (rasmiy tillar nuqtai nazaridan masalalarni shakllantirish, yechuvchanlik muammosi tushunchasi, murakkablik sinflarini kiritish, P = NP (?) masalasini shakllantirish, NP-ning to'liq masalalarini sinfi va uni o'rganish); 2) Algoritmlarni asimptotik tahlil qilish nazariyasi (algoritmning murakkabligi tushunchasi, algoritmlarni baholash kriteriyal ari, asimptotik baholarni olish usullari, xususan, rekursiv algoritmlar uchun, murakkablikni yoki bajarilish vaqtini asimptotik tahlil qilish); 3) Hisoblash algoritmlarini amaliy tahlil qilish nazariyasi (funksiyalarning intervalli tahlili, algoritmlar sifatining amaliy mezonlari, ratsional algoritmlarni tanlash metodikasi). Algoritmning aniq yoki bilvosita turli xil ta'riflari bir qator talablarni keltirib chiqaradi: - algoritmda cheklangan miqdordagi elementar bajarilishi mumkin bo'lgan ketma ketlik bo'lishi kerak, ya'ni yozuvning aniqligi talabi bajarilishi kerak; - algoritm masalani yechishda cheklangan sonli bosqichlarni bajarishi kerak, ya'ni harakatlarning aniqligi talabi bajarilishi kerak; - barcha qabul qilingan kirish ma'lumotlari uchun algoritm bir xil bo'lishi kerak, ya'ni universallik talabiga javob berish; - algoritm qo'yilgan vazifaga nisbatan to'g'ri yechimga olib kelishi kerak, ya'ni to'g'rilik talabi bajarilishi kerak. Algoritm xossalari Algoritmning asosiy xossalari haqida quyidagilarni ta’kidlash mumkin: 1-xossa . Diskretlilik, ya’ni algoritmni chekli sondagi oddiy ko’rsatmalar ketma ketligi shaklida ifodalash mumkin. 2-xossa . Tushunarlilik, ya’ni ijrochiga tavsiya etilayotgan ko’rsatmalar uning uchun tushunarli bo’lishi shart, aks holda ijrochi oddiy amalni ham bajara olmay qolishi mumkin. Har bir ijrochining bajara olishi mumkin bo’lgan ko’rsatmalar tizimi mavjud. 3-xossa . Aniqlik, ya’ni ijrochiga berilayotgan ko’rsatmalar aniq mazmunda bo’lishi lozim hamda faqat algoritmda ko’rsatilgan tartibda bajarilishi shart. 4-xossa . Ommaviylik, ya’ni har bir algoritm mazmuniga ko’ra bir turdagi masalalarning barchasi uchun yaroqli bo’lishi lozim. Masalan, ikki oddiy kasr umumiy maxrajini topish algoritmi har qanday kasrlar umumiy maxrajini topish uchun ishlatiladi. 4

5-xossa . Natijaviylik, ya’ni har bir algoritm chekli sondagi qadamlardan so’ng albatta natija berishi lozim. Bu xossalar mohiyatini o’rganish va konkret algoritmlar uchun qarab chiqish talabalarning xossalar mazmunini bilib olishlariga yordam beradi. Algoritmning tasvirlash usullari Algoritmning tasvirlash usullari haqida gapirganda algoritmning berilish usullari xilma-xilligi va ular orasida eng ko’p uchraydiganlari quyidagilar ekanligini ko’rsatib o’tish joiz: 1. Algoritmning so’zlar orqali ifodalanishi. 2. Algoritmning formulalar yordamida berilishi. 3. Algoritmning jadval ko’rinishida berilishi, masalan, turli matematik jadvallar, loteriya yutuqlari jadvali, funksiyalar qiymatlari jadvallari bunga misol bo’ladi. 4. Algoritmning dastur shaklida ifodalanishi, ya’ni algoritm kompyuter ijrochisiga tushunarli bo’lgan dastur shaklida beriladi. 5. Algoritmning algoritmik tilda tasvirlanishi, ya’ni algoritm bir xil va aniq ifodalash, bajarish uchun qo’llanadigan belgilash va qoidalar m ajmui algoritmik til orqali ifodalashdir. Ulardan o’quv o’rganish tili sifatida foydalanilmoqda. Bo’lardan Ye-praktikum yoki Ye-tili algoritm ijrochisi algoritmik tili ham mavjud. 6. Algoritmlarning grafik shaklda tasvirlanishi. Masalan, grafiklar, sxemalar ya’ni blok - sxema bunga misol bo’la oladi. Blok sxemaning asosiy elementlari quyidagilar: oval (ellips shakli)-algoritm boshlanishi va tugallanishi, to’g’ri burchakli to’rtburchak-qiymat berish yoki tegishli ko’rsatmalarni bajarish. Romb - shart tekshirishni belgilaydi. Uning yo’naltiruvchilari tarmoqlar bo’yicha biri ha ikkinchisi yo’q yo’nalishlarni beradi, parallelogramm- ma’lumotlarni kiritish yoki chiqarish, yordamchi algoritmga murojaat - parallelogramm ikki tomoni chiziq, yo’naltiruvchi chiziq - blok-sxemadagi harakat boshqaruvi, nuqta-to’g’ri chiziq (ikkita parallel) - qiymat berish. Algoritmda bajarilishi tugallangan amallar ketma-ketligi algoritm qadami deb yuritiladi. Har bir alhoxida qadamni ijro etish uchun bajarilishi kerak bo’lgan amallar haqidagi ko’rsatma buyruq deb aytiladi. Algoritmlarni ko’rgazmaliroq qilib tasvirlash uchun blok-sxema, ya’ni geometrik usul ko’proq qo’llaniladi. Algoritmning blok-sxemasi algoritmning asosiy tuzilishining yaqqol geometrik tasviri: algoritm bloklari, ya’ni geometrik shakllar ko’rinishida, bloklar orasidagi aloqa esa yunaltirilgan chiziqlar bilan ko’rsatiladi. Chiziqlarning yunalishi bir blokdan so’ng qaysi blok bajarilishini bildiradi. Algoritmlarni ushbu usulda ifodalashda vazifasi, tutgan o’rniga qarab quyidagi geometrik shakl(blok) lardan foydalaniladi. Algoritmlar berilishi va ifodalanishiga qarab: chiziqli, tarmoqlanuvchi va 5