logo

MODULLI TENGLAMA VA TENGSIZLIKLARNI YECHISH USULLARI

Yuklangan vaqt:

20.11.2024

Ko'chirishlar soni:

0

Hajmi:

945.7158203125 KB
    Matematika va informatikani o’qitish   
                       
               texnologiyalari loyihalari 
MAVZU:  MODULLI TENGLAMA VA 
TENGSIZLIKLARNI YECHISH 
USULLARI i9 presentation to Joe 
Smith2     Sonning moduli 
Berilgan  a   haqiqiy sonning moduli - sonlar o‘qining markazi 
yoki koordinatalar boshidan berilgan songacha bo‘lgan 
masofaga. 
∙
∙-5
50
5 birlik
5 birlik I 5 I   =   5,   5  >  0
-5,  -5  <  0            i9 presentation to Joe 
Smith3            Modulli chiziqli tenglamalar:
Ix +4 I= 9
a) x+4=9
x=9-4
x= 5 b)   x+4=-9
x=-9-4
x=-13
Javob: = 5 ; = -13         i9 presentation to Joe 
Smith4 |x -1 |=| 2 x +1 |
(x -1 ) 2 
=( 2 x +1 ) 2
(x -1 ) 2 
-( 2 x +1 ) 2
 =0
((x -1 )-( 2 x +1 ))((x -1 )+( 2 x +1 ))=0
- x -2 =0                 3 x= 0
-x= 2                                x= 0:3
   x= -2                                 x= 0
Javob :  -2 ;  0               Modulli  tenglama         i9 presentation to Joe 
Smith5                  Modulli  tenglama
Tenglamani yeching:  | х + 2 |  =  | 2х - 6 |
1 - usul :  х + 2 = 2х – 6      va         х + 2 =  - (2х – 6) 
               х  =  8                          3х   =   4
                                                    х   =   4/3
2 -  usul : ( | х + 2 | ) 2
 = ( | 2х - 6 | ) 2  
       | а | 2
=а 2
(х + 2) 2
 = (2х - 6) 2
3х 2
 – 28х + 32 = 0  =>   х  =  8,  х   =   4/3         i9 presentation to Joe 
Smith6 I x I   ≤ a,  bunda  a > 0Noma’lum modul belgisi ostida qatnashgan tengsizliklar 
∙
∙
-a a0
I x I   ≤ a   [ - a; a]  kesma  –a ≤ x ≤ a  tengsizlikni 
qanoatlantiruvchi   x  sonlar to‘plami.
I x I  ≤ a ,  tengsizlik  –a ≤ x ≤ a  qo‘sh tengsizlikning 
ayni o‘zini bildiradi.              i9 presentation to Joe 
Smith7 ∙
- 12 12
01 )  IxI  <  12
  Javob:  (- 12 ;  12 )  №  271 . Tengsizlikning yechimlari to‘plamini son o‘qida 
              tasvirlang: 
– 12  < x <  12  
3)  IxI  ≤  9
∙
- 9 9
0
Javob:  [- 9 ;  9 ]                 i9 presentation to Joe 
Smith8 TENGSIZLIKNI YECHING0	9	2			x	
3	3	:				х	Javob	
9	2		x	
х	х		2	
3		х
- 3
3	
0	9	2			x	
3	3	:				х	Javob	
9	2		x	
х	х		2	
3		х          i9 presentation to Joe 
Smith9 -2 0,8  I5x+3I  < 7x ning tengsizlik bajaradigan barcha butun qiymatlarini 
toping 
– 7 < 5x+3 < 7  
1) 5x+3  <  7
      5x<4
      x<0,8
Javob:  -1 va 0   2) 5x+3> -7
     5x>-10
     x > -2
-1 0

Matematika va informatikani o’qitish texnologiyalari loyihalari MAVZU: MODULLI TENGLAMA VA TENGSIZLIKLARNI YECHISH USULLARI

i9 presentation to Joe Smith2 Sonning moduli Berilgan a haqiqiy sonning moduli - sonlar o‘qining markazi yoki koordinatalar boshidan berilgan songacha bo‘lgan masofaga. ∙ ∙-5 50 5 birlik 5 birlik I 5 I = 5, 5 > 0 -5, -5 < 0

i9 presentation to Joe Smith3 Modulli chiziqli tenglamalar: Ix +4 I= 9 a) x+4=9 x=9-4 x= 5 b) x+4=-9 x=-9-4 x=-13 Javob: = 5 ; = -13

i9 presentation to Joe Smith4 |x -1 |=| 2 x +1 | (x -1 ) 2 =( 2 x +1 ) 2 (x -1 ) 2 -( 2 x +1 ) 2 =0 ((x -1 )-( 2 x +1 ))((x -1 )+( 2 x +1 ))=0 - x -2 =0 3 x= 0 -x= 2 x= 0:3 x= -2 x= 0 Javob : -2 ; 0 Modulli tenglama

i9 presentation to Joe Smith5 Modulli tenglama Tenglamani yeching: | х + 2 | = | 2х - 6 | 1 - usul : х + 2 = 2х – 6 va х + 2 = - (2х – 6) х = 8 3х = 4 х = 4/3 2 - usul : ( | х + 2 | ) 2 = ( | 2х - 6 | ) 2 | а | 2 =а 2 (х + 2) 2 = (2х - 6) 2 3х 2 – 28х + 32 = 0 => х = 8, х = 4/3