logo

Geometrik progressiyaning dastlabki n ta hadining yig’indisi

Загружено в:

20.11.2024

Скачано:

0

Размер:

1595.1357421875 KB
Dars mavzusi :  
    « Geometrik progressiyaning 
dastlabki  n  ta hadining yig’indisi » 1-misol: Ushbu yig’indini toping.                                               
   
Tenglikning ikkala qismini 3 ga ko’paytiramiz.   5	4	3	2	
3	3	3	3	3	1							S	
6	5	4	3	2	
3	3	3	3	3	3	3							S
Tengliklarni bunday yozib chiqamiz.	
)	3	3	3	3	3(	1	
5	4	3	2	
						S	
6	5	4	3	2
3)33333(3 S
Qavsdagi ifodalar bir xil. Shuning uchun pastdagi 
tenglikdan  yuqoridagi tenglikni ayirib , hosil qilamiz.
1	3	3	
6	
			S	S	
1	3	2	
6	
		S	
364	
2	
1	729	
2	
1	3	
6	
	
	
	
	
	S	
5	4	3	2	
3	3	3	3	3	1							S	
6	5	4	3	2	
3	3	3	3	3	3	3							S	
)	3	3	3	3	3(	1	
5	4	3	2	
						S	
6	5	4	3	2	
3	)	3	3	3	3	3(	3							S	
1	3	3	
6	
			S	S	
1	3	2	
6	
		S	
364	
2	
1	729	
2	
1	3	
6	
	
	
	
	
	S Maxraji             bo’lgan ixtiyoriy                           geometrik 
progressiyaning  qaraymiz. Shu progressiyaning n ta 
hadining yig’indisini  topaylik,  
Teorema.  Maxraji             bo’lgan geometrik 
progressiyaning dastlabki n ta hadining yig’indisi 
quyidagiga teng.
   1	
1	
2	
1	1	1	...	
	
					
n	
n	q	b	q	b	q	b	b	S	
q
q	b	
S	
n	
n	

	
	
1	
)	1(1	
1		q	n	b	b	b	b	...,	,	,	,	3	2	1	
1		q	
indisi	yig	hadining	n	dastlabki	S	n	'		
hadi	birinchi	b		1	
xraji	ma	q	 1
12
111	
... 					n
n	q	b	q	b	q	b	b	S	
q
q	b	
S	
n	
n	

	
	
1	
)	1(1	
1		q	n	b	b	b	b	...,	,	,	,	3	2	1	
1		q	
indisi	yig	hadining	n	dastlabki	S	n	'		
hadi	birinchi	b		1	
xraji	ma	q	 Isbot:                                                    Tenglikning ikkala 
qismini  q  ga ko’paytiramiz.   
Yuqoridagi ikkala tenglikdan bir xil qo’shiluvchilarni 
ajratib yozib chiqamiz.1	
1	
2	
1	1	1	...	
	
					
n	
n	q	b	q	b	q	b	b	S	
n	
n	q	b	q	b	q	b	q	b	qS	1	
3	
1	
2	
1	1	...						
)	...	(	
1	
1	
2	
1	1	1	
	
					
n	
n	q	b	q	b	q	b	b	S	
n	n	
n	q	b	q	b	q	b	q	b	q	b	qS	1	
1	
1	
3	
1	
2	
1	1	)	...	(							

Qavs ichida turgan ifodalar teng. Shuning uchun 
yuqoridagi tenglikdan pastdagisini ayirib, hosil qilamiz.	
n	
n	n	q	b	b	qS	S	1	1				
)	1(	)	1(	1	
n	
n	q	b	q	S				
q
q	b	
S	
n	
n	

	
	
1	
)	1(1 1
12
111	
... 					n
n	q	b	q	b	q	b	b	S	
n	
n	q	b	q	b	q	b	q	b	qS	1	
3	
1	
2	
1	1	...						
)	...	(	
1	
1	
2	
1	1	1	
	
					
n	
n	q	b	q	b	q	b	b	S	
n	n	
n	q	b	q	b	q	b	q	b	q	b	qS	1	
1	
1	
3	
1	
2	
1	1	)	...	(							
	
n	
n	n	q	b	b	qS	S	1	1				
)	1(	)	1(
1 n
n	q	b	q	S				
q
q	b	
S	
n	
n	

	
	
1	
)	1(1 2-misol:                  geometrik progressiya dastlabki beshta
  hadining yig’indisini hisoblang.  ...,	
3
2	
,	2	,	6
Bu progressiyada   
31
,6
1  qb	
27
242	
243	2	
3	242	6	
3
2	
243	
1	
1	6	
3
1	
1	
3
1	
1	6	
1	
)	1(	
5	
5	
1	
5		
	
		
	


	


	
		
	
	


	


	


	


	
		
	

	
	
q
q	b	
S	
...,	
3
2	
,	2	,	6	
3
1	
,	6	1			q	b	
27
242	
243	2	
3	242	6	
3
2	
243	
1	
1	6	
3
1	
1	
3
1	
1	6	
1	
)	1(	
5	
5	
1	
5		
	
		
	


	


	
		
	
	


	


	


	


	
		
	

	
	
q
q	b	
S    Mustahkamlash uchun masala
3-masala. Shaxmatning kelib
chiqishi haqida afsona: 
 
Shaxmat o’yini Hindistonda o’ylab chiqarilgan 
bo’lib, Sheram ismli hind shohi shu o’yin bilan 
tanishib chiqqandan keyin uni o’ylab topgan o’zining 
fuqoralaridan biri ekanligini bilib unga o’z qo’li bilan 
mukofat bermoqchi bo’ladi. Shaxmatni o’ylab 
chiqargan kishi Seta nomli donishmand shoh 
huzuriga kelib tazim bajo keltiradi. 
           Shoh: - O’ylab chiqargan ajoyib o’yining 
uchun    senga katta mukofat bilan xursand 
                qilmoqchiman,-dedi.    Tilagingni bajarishda sendan hech narsani 
ayamayman. –Lutfi keng shohim o’ylab ko’ray keyin 
javobini aytaman debdi. Ertasi kuni Seta shoh oldiga 
kelib,-shaxmat  taxtasining 
birinchi katagi uchun 1 dona, 
ikkinchisi uchun 2 dona,
uchinchisi uchun 4 dona, 
to’rtinchisi uchun 8 dona, 
beshinchisi uchun 16 dona, 
oltinchisi uchun 32 dona, 
Bas etar debdi shoh zarda bilan. 
Navkarlarim sen so’ragan narsani olib 
chiqib beradi debdi. Ertasiga hisobchilar 
hisoblab chiqib. Bu son shu qadar kattaki, 
bu tilakni bajarishga qodir emasmiz debdi.    
                 Bu son 18 446 744 073 709 551 615 
18 kvintillion 446 kvadrilion 774 trillion 73 milliard 
709 million 551 ming 615 dona 
Birinchi hadi 1, ikkinchi hadi 2 bo’lgan geometrik 
progressiya		
1	2	
2	1	
2	1	1	
2	...	2	2	1	
64	
64	
63	3	2	
64			

	
						S	
		
1	2	
2	1	
2	1	1	
2	...	2	2	1	
64	
64	
63	3	2	
64			

	
						S Mustahkamlash uchun:  
“ Bilimdonlar maydoni”  o’yini Mustahkamlash  uchun savollar:
1. Geometrik progreesiya dastlabki n ta hadining yig’indisi 
qanday topiladi? 
2. Geometrik progressiya n-hadini topish formulasini 
ayting.
3. b
n  va q ning farqi nimada?
4. Guruh nomlariga haqida qisqacha ta’rif bering  6. Ushbu afsonadagi maxrajini ayting 5. Shaxmat afsonasidagi keltirilgan misolda qaysi 
progressiyaga oidligini tushundingiz Dars yakuni
Geometrik progressiyaning dastlabki  n  ta hadining 
yig’indisining formulasi va unga oid misollar yechish1.  Bugungi darsda nimalarni o’rgandik Uyga vazifa
                    33-§.    
                 №  440(2,4, 6) ; 
                 №  441(2) ; 
                   №  442  ( 2 ).           Foydalanilgan adabiyotlar:   
1.    Algebra: Umumiy o’rta ta’lim maktablarining  9 -sinfi uchun darslik/
Sh.A . Alimov ,  O . R . Xolmuhammedov ,   M . A . Mirzaahmedov  3-nashri.-T.:
“ O’qituvchi” NMIU, 20 14 .- 240  b
2.   9 -sinfda Algebra  O’qituvchilar  uchun  uslubiy qo’llanma/
Sh.A . Alimov ,  O . R . Xolmuhammedov ,   M . A . Mirzaahmedov  3-nashri.-T.:
“ O’qituvchi” NMIU, 200 9 .-207 b

Dars mavzusi : « Geometrik progressiyaning dastlabki n ta hadining yig’indisi »

1-misol: Ushbu yig’indini toping. Tenglikning ikkala qismini 3 ga ko’paytiramiz. 5 4 3 2 3 3 3 3 3 1       S 6 5 4 3 2 3 3 3 3 3 3 3       S Tengliklarni bunday yozib chiqamiz. ) 3 3 3 3 3( 1 5 4 3 2       S 6 5 4 3 2 3)33333(3 S Qavsdagi ifodalar bir xil. Shuning uchun pastdagi tenglikdan yuqoridagi tenglikni ayirib , hosil qilamiz. 1 3 3 6    S S 1 3 2 6   S 364 2 1 729 2 1 3 6      S 5 4 3 2 3 3 3 3 3 1       S 6 5 4 3 2 3 3 3 3 3 3 3       S ) 3 3 3 3 3( 1 5 4 3 2       S 6 5 4 3 2 3 ) 3 3 3 3 3( 3       S 1 3 3 6    S S 1 3 2 6   S 364 2 1 729 2 1 3 6      S

Maxraji bo’lgan ixtiyoriy geometrik progressiyaning qaraymiz. Shu progressiyaning n ta hadining yig’indisini topaylik, Teorema. Maxraji bo’lgan geometrik progressiyaning dastlabki n ta hadining yig’indisi quyidagiga teng. 1 1 2 1 1 1 ...       n n q b q b q b b S q q b S n n    1 ) 1(1 1  q n b b b b ..., , , , 3 2 1 1  q indisi yig hadining n dastlabki S n '  hadi birinchi b  1 xraji ma q  1 12 111 ...      n n q b q b q b b S q q b S n n    1 ) 1(1 1  q n b b b b ..., , , , 3 2 1 1  q indisi yig hadining n dastlabki S n '  hadi birinchi b  1 xraji ma q 

Isbot: Tenglikning ikkala qismini q ga ko’paytiramiz. Yuqoridagi ikkala tenglikdan bir xil qo’shiluvchilarni ajratib yozib chiqamiz.1 1 2 1 1 1 ...       n n q b q b q b b S n n q b q b q b q b qS 1 3 1 2 1 1 ...      ) ... ( 1 1 2 1 1 1       n n q b q b q b b S n n n q b q b q b q b q b qS 1 1 1 3 1 2 1 1 ) ... (        Qavs ichida turgan ifodalar teng. Shuning uchun yuqoridagi tenglikdan pastdagisini ayirib, hosil qilamiz. n n n q b b qS S 1 1    ) 1( ) 1( 1 n n q b q S    q q b S n n    1 ) 1(1 1 12 111 ...      n n q b q b q b b S n n q b q b q b q b qS 1 3 1 2 1 1 ...      ) ... ( 1 1 2 1 1 1       n n q b q b q b b S n n n q b q b q b q b q b qS 1 1 1 3 1 2 1 1 ) ... (        n n n q b b qS S 1 1    ) 1( ) 1( 1 n n q b q S    q q b S n n    1 ) 1(1

2-misol: geometrik progressiya dastlabki beshta hadining yig’indisini hisoblang. ..., 3 2 , 2 , 6 Bu progressiyada 31 ,6 1  qb 27 242 243 2 3 242 6 3 2 243 1 1 6 3 1 1 3 1 1 6 1 ) 1( 5 5 1 5                                  q q b S ..., 3 2 , 2 , 6 3 1 , 6 1   q b 27 242 243 2 3 242 6 3 2 243 1 1 6 3 1 1 3 1 1 6 1 ) 1( 5 5 1 5                                  q q b S