logo

SONLI TENGSIZLIKLAR VA ULARNING XOSSALARI. TENGSIZLIKLARNI ISBOTLASH.

Yuklangan vaqt:

12.08.2023

Ko'chirishlar soni:

0

Hajmi:

1197.4521484375 KB
8	-MAVZU	.   	
SONLI TENGSIZLIKLAR VA ULARNING XOSSALARI. 	
TENGSIZLIKLARNI ISBOTLASH.	 	
 	
Reja.	 	
1.	 Sonli tengsizliklar	 	
2.	 Sonli tengsizlik	larning asosiy xossalari	 	
3.	 O’rtacha qiymatlar va ular orasidagi munosabatlar	 	
4.	 Umumlashgan Koshi tengsizligi.	 	
5.	 Umumlashgan Yung tengsizligi	 	
6.	 Gel’der tengsizligi.	 	
Kalit so	’zlar	:  Sonli tengsizlik	, o’rtacha qiymatla	r, Koshi tengsizligi	, Yung 	
tengsizligi	, Gel’der tengsizligi	 	
 	
1.	  Sonli tengsizliklar	 va ularning	 asosiy xossalari	 	
Sonlarni taqqoslash amaliyotda keng qo’llaniladi.	 Masalan, iqtisodchi	 rejada	 	
ko’zda tutilgan 	ko’rsatkichlarni amaldagi ko’rsatkichlar bilan taqqos	-laydi,	 shifokor 	
bemorning  haroratini  sog’lom  kishining 	harorati  bilan  taqqos	laydi,	 chilangar 	
yo’nayotgan buyumining o’lchamlarini andaza bilan taqqos	-laydi.	 	Bu  uchala 	
holda  qandaydir  sonlar  o’zaro  taqqoslanadi.	 Sonlarni	 taqqos	-lash  natijasida  sonli 	
tengsizliklar hosil bo’ladi.	 	
1.1.1	-Ta’rif.	 Agar 	�	−	� ayirma 	musbat  bo’lsa,	 u  holda 	� son 	� sondan	 katta 	
deyiladi.	 Agar 	�	−	� ayirma manfiy bo’lsa,	 u holda 	� son 	� sondan kichik deyiladi.	 	
Agar 	� son 	� sondan katta bo’lsa,	 bu 	�	>	� kabi; agar 	� son 	� sondan	 kichik bo’lsa,	 	
bu 	&#3627408462;	<	&#3627408463; kabi yoziladi.	 	
Shunday 	qilib,	 &#3627408462;	>	&#3627408463; tengsizlik 	&#3627408462;	−	&#3627408463; ayirma  musbat,	 ya’ni 	&#3627408462;	−	&#3627408463;	>	0 	
ekanini bildiradi,	 &#3627408462;	<	&#3627408463; tengsizlik esa 	 &#3627408462;	−	&#3627408463;	<	0 ekanini bildiradi.	   	
 	
 
 	
2.	 Sonli tengsizlik	larning asosiy xossalari	 	
 
   	
 
1.1	-m	iso	l. Agar 	&#3627408475;
&#3627408474; to’g’ri  kasr  bo’lsa,	 u  holda 	&#3627408475;
&#3627408474;	<	&#3627408475;+1	
&#3627408474;+1 bo’lishini  isbotlang.	 	
∆  &#3627408475;
&#3627408474;  kasr 	&#3627408475;	<	&#3627408474;	 bo’lganda  (n  va  m 	– natural  sonlar)  to’g’ri  kasr  deb	 ata	lishini 	
eslatib o’tamiz.	 Ushbu 	&#3627408475;
&#3627408474;	−	&#3627408475;+1	
&#3627408474;+1=	&#3627408475;(&#3627408474;+1)−&#3627408474;(&#3627408475;+1)	
&#3627408474;(&#3627408474;+1)	=	&#3627408475;−&#3627408474;	
&#3627408474;(&#3627408474;+1) ayirma noldan kichik	, 	
chunki 	&#3627408475;	−	&#3627408474;	<	0,&#3627408474;	>	0,&#3627408474;	+	1	>	0. Binobarin, 	&#3627408475;
&#3627408474;	<	&#3627408475;+1	
&#3627408474;+1 .▲	                                      	   	
 
1.	2-m	iso	l. Agar 	&#3627408462;	≠	&#3627408463; bo’lsa,	 u holda 	&#3627408462;2+	&#3627408463;2	>	2&#3627408462;&#3627408463;	 bo’lishini isbotlang.	     	 	
   	∆ &#3627408462;2+	&#3627408463;2−	2&#3627408462;&#3627408463;	 ayirma  musbat  ekanligini  isbotlaymiz.	 Haqiqatan  ham,	 &#3627408462;2+	
&#3627408463;2−	2&#3627408462;&#3627408463;	=	(&#3627408462;	−	&#3627408463;)2	>	0, chunki  	&#3627408462;	≠	&#3627408463; . ▲	 	
 
1.	1-teorema	. Agar 	&#3627408462;	>	&#3627408463; va	  &#3627408463;	>	&#3627408464; bo’lsa,	 u holda 	&#3627408462;	>	&#3627408464; bo’ladi.	                       	    	  	
Δ Shartga ko’ra 	&#3627408462;	>	&#3627408463; va	 &#3627408463;	>	&#3627408464;. Bu	 &#3627408462;	−	&#3627408463;	>	0 va 	&#3627408463;	−	&#3627408464;	>	0 ekanini bildiradi.	 &#3627408462;	−	
&#3627408463; va 	&#3627408463;	−	&#3627408464; musbat sonlarni qo’shib, 	(&#3627408462;	−	&#3627408463;)+	(&#3627408463;	−	&#3627408464;)>	0  ni hosil qilamiz, ya’ni 	
&#3627408462;	−	&#3627408464;	>	0. Demak,	 &#3627408462;	>	&#3627408464;. ▲	 	
 
  1.2	-teorema.	 Agar  tengsizlikning  ikkala  qismiga  ayni  bir  son  qo’shilsa,	 u  holda 	
tengsizlik ishorasi o’zgarmaydi.	 	
Δ &#3627408514;	>	&#3627408515; bo’lsin	.  Bu  holda  ixtiyoriy 	&#3627408464; son  uchun   	&#3627408462;	+	&#3627408464;	>	&#3627408463;	+	&#3627408464; teng	-sizlikning 	
bajarilishini  isbotlash  talab  qilinadi. 	Ushbu	 (&#3627408462;	+	&#3627408464;)−	(&#3627408463;	+	&#3627408464;)=	&#3627408462;	+	&#3627408464;−	&#3627408463;	−	&#3627408464;	=	
&#3627408462;	−	&#3627408463;ayirmani qaraymiz. Bu ayirma musbat, chunki masalaning shartiga ko’ra	 &#3627408462;	>	
&#3627408463;. Demak, 	&#3627408462;	+	&#3627408464;	>	&#3627408463;	+	&#3627408464;. ▲	 	
 
1.1	-Natija.	 Istalgan  qo’shiluvchini  tengsizlikning  bir 	qismidan  ikkinchi  qis	-miga	 	
shu  qo’shiluvchining  ishorasini  qarama	-qarshisiga  almashtirgan  holda  ko’chirish	 	
mumkin.	 	
Δ  &#3627408514;	>	&#3627408515;	+	&#3627408516;  bo’lsin	. Bu tengsizlikning ikkala qismiga 	– &#3627408464; sonni qo’shib,	 &#3627408462;	−	&#3627408464;	>	
&#3627408463;	+	&#3627408464;	−	&#3627408464; ni hosil qilamiz,	 ya’ni 	&#3627408462;	−	&#3627408464;	>	&#3627408463; ▲	 	
 
1.	3-teorema.	 Agar tengsizlikning ikkala qismi ayni bir musbat songa ko’	paytrilsa,	 	
u  holda  tengsizlik  ishorasi  o’zgarmaydi.	 Agar  tengsizlikning  ikkala  qismi  ayni  bir 	
manfiy songa ko’paytrilsa,u holda tengsizlik ishorasi	 qarama	-qarshisiga o’zgaradi.	 	
Δ  1) 	&#3627408514;	>	&#3627408515; va 	&#3627408516;	>	?????? bo’lsin	. &#3627408462;&#3627408464;	>	&#3627408463;&#3627408464;	 ekanini isbotlaymiz. 	 	
Shartga ko’ra 	&#3627408462;	−	&#3627408463;	>	0  va 	&#3627408464;	>	0. Shuning uchun 	(&#3627408462;	−	&#3627408463;)&#3627408464;	>	0, ya’ni 	&#3627408462;&#3627408464;	−	&#3627408463;&#3627408464;	>	
0. Demak,  	&#3627408462;&#3627408464;	>	&#3627408463;&#3627408464;	. 	
2) 	&#3627408514;	>	&#3627408515; va 	&#3627408516;	<	?????? bo’lsin	. &#3627408462;&#3627408464;	<	&#3627408463;&#3627408464;	 ekanini isbotlaymiz.	 Shartga ko’ra 	&#3627408462;	−	&#3627408463;	>	0 	
va 	&#3627408464;	<	0. Shuning uchun 	(&#3627408462;	−	&#3627408463;)&#3627408464;	<	0, ya’ni 	&#3627408462;&#3627408464;	−	&#3627408463;&#3627408464;	<	0. Demak,  	&#3627408462;&#3627408464;	<	&#3627408463;&#3627408464;	. ▲	 	
1.	2-Natija.	 Agar tengsizlikning ikkala qismi ayni bir musbat songa bo’linsa,	 u holda 	
tengsizlik  ishorasi  o’zgarmaydi.	 Agar	 tengsizlikning  ikkala  qismi  ayni  bir  manfiy 	
songa bo’linsa,u holda 	tengsizlik ishorasi qarama	-qarshisiga o’zga	-radi.	  1.4.	-teorema.	 Bir xil ishorali tengsizliklarni qo’shishda xuddi shu ishorali	 tengsizlik 	
hosil bo’ladi: agar 	&#3627408462;	>	&#3627408463; va 	&#3627408464;	>	&#3627408465; bo’lsa,	 u holda 	&#3627408462;	+	&#3627408464;	>	&#3627408463;	+	&#3627408465; bo’ladi.	 	
Δ  Shartga  ko’ra 	&#3627408462;	−	&#3627408463;	>	0 va 	&#3627408464;−	&#3627408465;	>	0. Ushbu  ayirmani  qaraymiz:	  (&#3627408462;	+	&#3627408464;)−	
(&#3627408463;	+	&#3627408465;)=	&#3627408462;	+	&#3627408464;	−	&#3627408463;	−	&#3627408465;	=	(&#3627408462;	−	&#3627408463;)+	(&#3627408464;−	&#3627408465;). 	Musbat  sonlarning  yig’indisi 	
musbat bo’lgani uchun 	(&#3627408462;	+	&#3627408464;)−	(&#3627408463;	+	&#3627408465;)>	0,ya’ni 	(&#3627408462;	+	&#3627408464;)>	(&#3627408463;	+	&#3627408465;). ▲	 	
1.	5.	-teorema.	 Chap va o’ng qismlari musbat bo’lgan bir xil 	ishorali teng	-sizliklarni 	
ko’paytirish natijasida xuddi shu ishorali tengsizlik hosil bo’ladi:	 agar 	&#3627408462;	>	&#3627408463;,&#3627408464;	>	
&#3627408465;  va  	&#3627408462;,&#3627408463;,&#3627408464;,&#3627408465;– musbat sonlar bo’lsa	, u holda 	&#3627408462;&#3627408464;	>	&#3627408463;&#3627408465;	 bo’ladi.	 	
 Ushbu ayirmani qaraymiz:	  	
&#3627408462;&#3627408464;	−	&#3627408463;&#3627408465;	=	&#3627408462;&#3627408464;	−	&#3627408463;&#3627408464;	+	&#3627408463;&#3627408464;	−	&#3627408463;&#3627408465;	=	&#3627408464;(&#3627408462;	−	&#3627408463;)+	&#3627408463;(&#3627408464;−	&#3627408465;) 	
Shartga  ko’ra 	&#3627408462;	−	&#3627408463;	>	0,&#3627408464;	−	&#3627408465;	>	0,&#3627408463;	>	0,&#3627408464;	>	0. 	Shuning  uchun 	(&#3627408462;	−	&#3627408463;)+	
&#3627408463;(&#3627408464;−	&#3627408465;)>	0,  ya’ni 	&#3627408462;&#3627408464;	−	&#3627408463;&#3627408465;	>	0, bundan 	&#3627408462;&#3627408464;	>	&#3627408463;&#3627408465;	. ▲	 	
 
 	
  
 	
§2. O’rtacha qiymatlar va ular orasidagi munosabatlar. 	
1. O’rtacha qiymatlar. 
 	
a ={a	1, a	2 ,…, a	n}  musbat sonlar ketma-ketligi uchun  	
o’rta arifmetik qiymat 	  A(a)=A	n=	naaa	
n	+	+	+	...	21	 ,   	
o’rta geometrik qiymat  	 G(a)=G	n=	n
n	aaa
...	21	,    	
o’rta kvadratik qiymat 	 K(a)= K	n=	n aaa	
n
2
2
2
2
1	... +++	   va 	 	
o’rta garmonik qiymat   	N (a)=N	n= 	1
1
2
1
1	...	−
−−	+++	naaa
n	  larni aniqlaymiz. 	
Xususan	 x, y 	 musbat  sonlar uchun  bu o’rta   qiymatlar quyidagicha aniqlanadi:	    	
            
           A	2=	2yx
+	;   G	2=	xy	;    K	2=	2	
22yx
+	;    N	2 = 	yx
xy
+
2. 	
2. O’rta arifmetik va o’rta geometrik 
qiymatlar haqida Koshi tengsizligi va 
uning turli isbotlari.   
Teorema.  A	n  ≥ G	n va  	An =  G	n  tenglik  faqat va faqat  	
a1=a	2 =…= a	n  tenglik bo’lganda	 o’rinli. 	 	
1-Isboti	.  	x≥ 1  da  	ex - 1	≥ x 	 ekanligi ma’lum, 	ex -1	=x 	 tenglik esa faqat	 x=	1 da 
bajariladi	
.  Bundan:   	
1= 	e0 = exp	⎟ ⎟
⎠ ⎞
⎜ ⎜
⎝ ⎛ −	∑=	
1
)(	
1
n
i i	aA
a	=	)1
)(
exp(	
1	
−	∏= n
i i	aA
a	 ≥ ∏= n
i i	aA
a	1	)( = 	
n	
aA а
G
⎟ ⎟
⎠ ⎞
⎜ ⎜
⎝ ⎛
)()(	. 	
Demak, 	An ≥  G	n va tenglik esa faqat   	1
()	i
na
Aa	=	, i=	1, 2	,…, n 	bulganda bajariladi. 
Bundan esa  	
a1=a	2 =…= a	n = A	n ekanligi kelib chiqadi	.  	 	
  5 
   	n	n	A	G
≥	 ekanligini isbotlaymiz: 	2
n	=	 da  	12
12
2
aa
aa +
⋅≤	
. Bu tengsizlik 
ixtiyoriy musbat    va  sonlar uchun o’rinli bo’lgan 	
1a	2a	()	
2
12	
0
aa	−	≥	 
tengsizlikdan oson hosil qilinadi. Berilgan  tengsizlikni ixtiyoriy 	
p ta natural sonlar 
uchun to’g’ri  deb, 	
p+1 ta natural sonlar uchun  to’g ’riligini  isbotlaymiz. Bu sonlar 
 bo’lsin. 	
12, , ..., ,	nn	aa a a	+1	1
n	a	+	 ularning orasida eng kattasi bo’lsin.  Ya’ni, 
.  Shuning uchun  	
11 1	, ...	nnaaa	++	≥	na
≥	12
1	...	n
n	aa a
a
n	
+	
+	++
≥	. Quyidagicha 
belgilash kiritamiz:  	
12 121
1	... ...
,
11	nn n
nn	aa a aa a a nAa
AA
nn	1
n n	
n	
+	+
+	+++ ++++ ⋅ +
===	
+	+	
.  
 bo’lgani uchun 	
1
n	a	+	≥	nA	1
nn	aA	α	+	=	+	 deb yozish mumkin, bu yyerda 	0	α	≥	. U 
holda 	
1	11	
nn
n	nA A
A
nn	
nA	α	α	
+	
⋅+ +
==
++	+	. Bu tenglikni ikkala qismini (	p+1) – 
darajaga ko’tarib, quyidagini topamiz: 	
()	() ()	
() () ()( )()	
1
11 1
11
1 1	
...
11
.	
n
nn
nn nnn
nn n n
nn nn nn	
AA ACA nn
AA AA AA	αα
αα	+
++
++
+ +	
⎛⎞
=+ = + + ⎜⎟
++
⎝⎠
≥+⋅=⋅+=⋅	n	≥	
 	
  Farazga ko’ra,  	(	)	12	...	n
n	
n	A	aa a
≥⋅⋅⋅	. Buni e’tiborga olib, 	
() ()	
1
11 12	...	nn
nnn n	
1n	A	Aa aa aa	+
++	≥⋅≥⋅⋅⋅⋅	+	. Bundan 	1
112	...	n
nn	1
n	A	aa a a	+	+	+	≥⋅⋅⋅⋅	. 
Tenglik     bo’lganda o’rinli bo’ladi. 	
12	...	n	aa a===	
  
2-isbot	. Teoremaning isboti quyidagi tasdiqqa asoslangan: 	
 
6 
  Agar nomanfiy  sonlar 	12, , ...,	n	bb b	12	... 1	n	bb b	⋅	⋅⋅ =	 tenglikni qanoatlantirsa, u 
holda  . 	
12	...	n	bb b+++≥	n	
Bu tasdiqni masalani matematik  induktsiya usulida isbotlaymiz. 	
1
n = da masala ravshan. 	nk	=	 da  	12	... 1	k	bb b	⋅	⋅⋅ =	 tenglikni qanoatlantiruvchi 
ixtiyoriy    – nomanfiy sonlar uchun 	
12, , ...,	k	bb b	12	...	k	bb b	k	+	++ ≥	 tengsizlik o’rinli 
bo’lsin.   da  	
1
nk =+	12 1	... 1	k	bb b	+	⋅	⋅⋅ =	 tenglikni qanoatlantiruvchi ixtiyoriy  
 – nomanfiy sonlar uchun 	
12, , ...,	k	bb b	+1	12 1	... 1	kk	bb b b	+	⋅	⋅⋅ ⋅ ≥	 tengsizlikni 
qanoatlantirishini ko’rsatamiz. 	
Umumiylikka zarar etkazmasdan  	1	1	kbb	k+	≤	≤	 deb hisoblaymiz. Unda  
 bo’lgani uchun induktsiya faraziga ko’ra  
         bo’ladi. Endi  	
()	12 1 1	... 1	kkk	bb b b b	−+	⋅⋅⋅ ⋅ ⋅ =
12 1 1	...	kkk	bb b bb k	−+	+++ +⋅ ≥	11	1	kk kkbb bb	++	+	≥⋅ −	  ekanligini 
isbotlash etarli. Bu  	
()	(	)	1	1	kkbb	+	+⋅ −≥	10	 tengsizlikka teng kuchli  	1	1	kkbb	+	≤	≤	 
bo’lgani uchun ohirgi tengsizlik o’rinli ekanligi ravshan. 	
 
3-isbot	. Teoremaning isboti quyidagi ma’lum tasdiqqa asoslangan: 	
x≥ 1  da  	ex -	1≥ x 	 ,  shu bilan birga 	ex -1	=x 	 tenglik esa faqat	 x=	1 da bajariladi	.  
Bundan:   	
1= 	e0 = exp	⎟ ⎟
⎠ ⎞
⎜ ⎜
⎝ ⎛ −	∑=	
1
)(	
1
n
i i	aA
a	=	)1
)(
exp(	
1	
−	∏= n
i i	aA
a	 ≥ ∏= n
i i	aA
a	1	)( = 	
n	
aA а
G
⎟ ⎟
⎠ ⎞
⎜ ⎜
⎝ ⎛
)()(	. 	
Demak, 	A(a) 	≥  G(a) 	va tenglik esa faqat   	1
)( =
aA
a	i	, i=	1, 2	,…, n 	bo’lganda 
bajariladi. Bundan esa  	
a1=a	2 =…= a	n = A(a)	 ekanligi kelib chiqadi	. 	
 
1-misol	. 	,	0	xy	>	 bo’lsa,  	22	1	x	yxyx	y	+	+≥ + +	 tengsizlikni isbotlang. 	
Yechilishi:  	
  7 
2222
22
22	
1 222 2
11 1
22	x	xyy
xy xyxy
xy
++≥++⇒ + + +
++ = + +	+	
. 	
22
2 22
2	
,
22
1 ,1
22
1 .
22
xy
xy
y yxyxyx
x x
⎧
+≥
⎪
⎪
⎪
++≥ ⇒++≥++ ⎨
⎪
⎪
+≥
⎪
⎩	
.
y 	
2-misol	. 	0	x	>	 bo’lsa, 	
6
12 4	
2222	x	x	x	+	≥⋅	 tengsizlikni isbotlang. 	
Yechilishi.	  	
1
11
6
12 4 12 4
6
12 4	
2222222 2222	x	xxxx x	+	
+ ≥⋅ ⋅ =⋅ =⋅ =⋅	x	
0	
. 	
Misollar: 	
1.   Agar 	,xy	>	 bo’lsa, 	44	88	x	y
++≥	xy	
0	
 ni isbotlang. 	
2.    bo’lsa quyidagini isbotlang:  	12 345,,,,
xx xxx >	
(	)	22222
1 23 45 123 45x	xxxx xxxxx
++++≥ +++	. 	
3. 	,, 0x	yz >	 bo’lsa, 	222x	y z xy yz xz
++≥++	 ni   isbotlang. 	
4.   bo’lsa,  	,, 0abc>	3
abc
bca ++ ≥ ni  isbotlang. 	
5. 
 bo’lsa,  	()	,, 0abc>	(	)(	)(	)	11 16
abcabc a +++ +≥	bc	 ni isbotlang. 	
 
3. O’rta geometrik va o’rta garmonik qiymatlar orasidagi tengsizli\
k.  
Teorema.  G (a) 	≥ H(a) 	ekanligini, jumladan, 	H(a) = G(a) 	 tenglik  faqat va 
faqat  	
a1=a	2 =…= a	n shart bajarilsa to’g’riligini isbotlang.	   	
Isboti	.  Koshi tengsizligidan foydalanib  (1-masalaga qarang) foydalanib  	
 
8 
                            (	H(a)	) 	-1= 	1
11
2
1
1
1
1
2
1
1	))((...
...−
−−−
−
−−	=
≥
+++
aGaaa
n aaa	n
n
n	 tenglikga ega 
bo’lamiz. Jumladan, 	
 H(a) = G(a) 	 tenglik faqat 	  a	1=a	2 =…= a	n da  bajariladi.   	
1-misol	. Agar   bo’lsa,  	,, 0abc>	3
111 3 abc
abc ++
≤
++	 tengsizlikni 
isbotlang. 	
Yechilishi	:  	()	
111
9 abc
abc
⎛⎞
≤++ ++ ⎜⎟
⎝⎠	, 	
()	
3
3
3
33, 111 99.
111 1
3.
abc abc
abc
abc
abc abc
abc abc
⎧
++≥
⎪ ⎛⎞
⇒++ ++ ≥ =
⎨ ⎜⎟
++≥⋅ ⎝⎠
⎪
⎩	
 	
2-misol	. Agar  ,  	,, 0abc>	23	1	ab c	=	 bo’lsa, 	111
6
abc	+	+≥	 ni isbotlang. 	
Yechilishi	: 	23
6	
1 23 1 11111 1
66
abc abbccc ab c
++= +++++≥ =	. 	
 	
Misollar 	
1. 	,, 0x	yz
>	 bo’lsa, u holda quyidagi  tengsizlikni  isbotlang: 	
()	()	
2
222	
1111 283
9
xyz
xyz	
xyz x y z
++ +≥
++	+	+	
. 	
2. Agar    va  	12, , ..., 0	n	xx x>	12	... 1	n	xx x	+	++ =	 bo’lsa, u holda quyidagi 
tengsizlikni isbotlang: 	
()	()	()	
12
12 12 1 1	...1
... 1 ... 1 ...	n
n nnx
xx
xx x xx x x x x	
−	
++ +
+++ +++ +++	
n	
≥	. 	
3. 	,, 0xy	z>	 bo’lsa, u holda quyidagi  tengsizlikni  isbotlang:  	
 
9 
222	
0
xxyy yzzxz
xy yz xz −−−	+	+≥
+++	. 	
4. Agar   bo’lsa, u holda quyidagi tengsizlikni  isbotlang:   	,, 0abc>	
2
ab c
bc ac ab	+	+≥
+++	. 	
5. Agar   bo’lsa, u holda quyidagi tengsizlikni  isbotlang: 	,,, 0
abcd >	
222 2 2 2
ppp p p p	abc abcbacca	+++ + + +	++≥ + +	b. 	
 
4. O’rta arifmetik va o’rta kvadratik  qiymatlar orasidagi tengsizlik.   
Teorema. K (a) 	≥ A(a) 	tengsizlik o’rinli ekanligini, jumladan,                 	
K(a) = A(a) 	 tenglik faqat  	a1=a	2 =…= a	n  holdagina  o’rinli bo’lishini isbotlang.	   	
Isboti	: Koshi tengsizligidan foydalanib (1-masalaga qarang) foydalanib   	
                                         	2	ijaa	≤	22	,1	ijaa i	j	n	+	≤< ≤	 tengsizlikni hosil qilamiz. 
Demak, 	
222 2
12 1 2
1	(...) ...2	nn ijn	aa a aa a aa	
≤< ≤	
+++ =++++	ij	∑	≤     	
                                     	22 2 22
12 1	... ( )	niijn	aa a aa	
≤< ≤	
≤++++ +	j	∑	= n	( .	  	22 2
12	... )	n	aa a +++	
Eslatib o’tamiz, 	 K (a) = A(a)  	 tenglik faqat	  a	1=a	2 =…= a	n   o’rinli bo’ladi.   	
1-misol	.  	
                   H 	(a) ≥ min	{a1, a	2 ,…, a	n}   va 	  max	{a1, a	2 ,…, a	n} ≥  	K(a)  tengsizliklarni 
isbotlang. 	
Yechimi:	 Umumiylikni chegaralamagan holda   	
                               min{a	1, a	2 ,…, a	n}= a	1 , max{a	1, a	2 ,…, a	n}=  a	n  	
deb hisoblash mumkin. U holda 
 
10 
H(a)= 	11
12	...	n	
n
aa a	
−− −	+++	1≥ 	1
11 1
11 1	...
n
a
aa a	−− −	=	
+++	
, 	
K(a)=	
22 2 22 2
12	... ...	nnn n
n	aa a aa aa
nn
+++ +++
≤=	   bo’ladi.  	
Izoh 1	.  yuqoridagi  misollardan   	
             max{a	1, a	2 ,…, a	n} ≥ K(a) 	≥ A(a) 	≥  G(a) 	≥ H (a) 	≥ min{a	1, a	2 ,…, a	n}    	
ekanligi kelib chiqadi	.   	
          	2-misol	. 	()	(	)2
222	3 abc abc ++ ≥++	 tengsizlikni isbotlang. 	
Yechilishi	: 	
()()()	
222222
22 2
222	333 2 22
0.
a b c a b c ab bc ac
abc abbcac ab bc ca++≥++ + + ⇒
⇒++≥++ ⇒− +− +− ≥	
 	
3-misol	. 	()( )	(	)	(	)	2
22222	6 ababc ababc +++≥+++	2	
.
⇒ −≥	
 tengsizlikni isbotlang. 	
Yechilishi:	 
               	
()	()	
()	()()	
2
22
2
2222
2
222	2
22 2 0
3 ab ab
ababab ab
abc abc
⎧
+≥+
⎪
×⇒ +≥++
⎨
++ ≥++
⎪
⎩	
()( )	()	(	)	22
22222	6 ababc ababc +++≥+++	. 	
 	
Misollar 	
1. Agar   va   bo’lsa, u holda quyidagi  tengsizlikni isbotlang:  	,, 0
abc >	1
abc ++=	
()	()	()	
22	3
abc bac cab +− + + − + + − ≥	2	. 	
2.  Agar   bo’lsa, u holda quyidagi tengsizlikni isbotlang:  	,, 0
abc >	
()()()	
333
222	8 4
abc abc
ab bc ca a b b c a c ++	+	≥
++ + + +	. 	
  11 
3. Agar  bo’lsa, u holda quyidagi tengsizlikni isbotlang: 	,,
abc R ∈	
()()()	()	
44 4
444	4
7
ab bc ac a b c
+++++≥ ++	. 	
4. Agar 	,, 0xy	z>	 va 	3	xy	z
++=	 bo’lsa, u holda quyidagi  tengsizlikni isbotlang:  	
xy	zx	y	xz	yz	+	+≥++	. 	
5. Agar  va  	,, 0
abc >	222	1
abc	+	+=	 bo’lsa, u holda quyidagi tengsizlikni 
isbotlang:  	
333	
5 2
bc ac ab
aa bb cc	+	+≥	
−	−−	
. 	
 
 	
§4. Umumlashgan Koshi tengsizligi. 	
 
Teorema. a	1, a	2 ,…, a	n, p1, p	2 ,…, p	n – musbat sonlar bo’lsin.  	
                         	
12
12	...
11 2 2
12
12	
...
...
...	n
n	pp p
p
pp
nn
n
n	
ap a p a p
aa a
pp p	
+	++	
⎛⎞+++
≤ ⎜⎟
+++
⎝⎠	
                  (1) 	
ekanligini isbotlang, tenglik  esa faqat   	a1= a	2 =…= a	n  da bajariladi.	   	
Isboti:	   s =	11 2 2
12	...
...	nn
n	ap a p a p pp p+++
+++	 belgilash kiritamiz.    	
ex -1 	≥ x  ( 	x≥1)  	tengsizlikka ko’ra   	s 	(	)1ia	e	−	s≥  a	i ,  i=1, 2,…, n.	 	
Bu tengsizliklarni barchasini  ko’paytirib chiqamiz:  	
12
12
12	... 11 2 2
12 12
...	...
... exp ...
.	nn
npppp
pp
nn
n n
pp p	ap a p a p
aa a s p p p
s	
s	
+++
+++	+	++
⎛⎞
≤− ⎜⎟
⎝⎠
=	+ ++ =	
  	
Tenglik faqat   	s =a	1=a	2 	=…= a	n   	da bajarilishi  esa 1-masaladagidek 
isbotlanadi.	
   	
  12 
 	
12
12	...
11 2 2
12
12	
...
...
...	n
n	pp p
p
pp
nn
n
n	
ap a p a p
aa a
pp p	
+	++	
⎛⎞+++
≤ ⎜⎟
+++
⎝⎠	
 	
Misol.	 Quyidagi tengsizlikni isbotlang: 	
8
346
31618	
43
8
abc
ab c
⎛⎞
++
≥
⎜⎟
⎝⎠	. 	
Yechilishi:	 Koshi tengsizligining umumiy  holiga ko’ra 	p  ning o’rnida 3 
kelyapti.  	
1)  	;,	x	Rpq Q
∈	∈	bo’lsa, 	
()	
22
2	
sin cos	
pq
pq	
pq	
pq
xx
pq	
+	⋅≤ +	 ni isbotlang. 	
2) 	
12
234
61220	
345
12
abc
ab c
⎛⎞
++
≥
⎜⎟
⎝⎠	 	
3)    bo’lsa, 	,, 0
abc >	
2
222
22 2 222	
47
abc abbcac
bca abc ++
⎛	⎞	+	++ ≥
⎜
++
⎝⎠	⎟	 isbotlang. 	
4)    bo’lsa, 	,, 0
abc >	222	31
abc abbcac
bca a b c ++	+	++ ≥ +
++	 isbotlang. 	
5)  bo’lsa, 	,, 0
abc >	222	26
a b b c a c ab bc ac
c a b abc
+++ ++	2	+	++ ≥+
++	 
isbotlang. 	
 	
§5. Umumlashgan Yung tengsizligi.  	
          Teorema.                              	
1212
12
12	......	
nr
rr
n
n
na
aa
aa a
rr r
≤+++	               
             (2) 	
 
13 
tengsizlik urinli, bu yyerda 	a1, a	2 ,…, a	n,  	r1,  r	2, …,  r	n lar musbat sonlar, jumladan,  	
12
11 1... 1	
n	rr r+++ =	
. 	
Isboti:	  5-masaladagi  
(1) tenglikda    	ai  ni  ga , 	r	ir
ia	i  ni  esa 	1	ir	    (	i=	1, 2, …, 	
n)  ga almashtirib 
                                                	
1212
12
12	......	
nr
rr
n
n
na
aa
aa a
rr r
≤+++	       ni   olamiz
.             	
Izoh	. n=2	  holida esa Yung klassik tengsizligiga ega bo’lamiz: 	 	
                                       	11	pqab
pq	ab	+	≥	   ( 	a≥  	0 , b	≥ 	0) ,                              (3) 	
bu yyerda   	p, q	  sonlar   	11
1
pq +=	  tenglikni qanoatlantiruvchi musbat sonlar.  	
1-misol	. Agar 
 va 	,, 0
abc >	ab bc ac abc	+	+=	 bo’lsa, 	
bcabc
abc
bca
≤++	a
 	
Yechilishi:	 Shartga ko’ra 	111
1
ab bc ac abc
abc	+	+= ⇒++=	 	
bcabc
abc
bca
≤++	a
 tengsizlik Yung tengsizligin
ing xususiy holidan kelib 
chiqadi. 	
2-misol.	 Agar   bo’lsa, 	,, 0
abc >	236	18 12 6 36a b c abc	+	+≥	 ni isbotlang. 	
Yechilishi:	   tengizlikni ikkala tomonini 36 ga 
bo’lamiz 	236	18 12 6 36 abc a ++≥	bc	
236
12	11 1
;
236	
n	
abc abc
rr r
++≥ +++=	…	1 bo’lsa, Yung tengsizligi o’rinli. 	
236	111
1
236 2 3 6 abc
abc
++ =⇒ + + ≥	 tengsizlik o’rinli. 	
 	
 
14 
Misollar 	
1) Agar 	,, 0xy	z ≥	 va 	2	xy	z	+	+=	 bo’lsa, 	
333 333	2
x y y z z x xy yz zx +++ ++≤ ni isbotlang. 	
2) Agar   va 	,, 0
abc ≥	222	3
abc	+	+=	 bo’lsa, 	
()()	(	)	222 ab bc ac
−−−	1
≥ ni isbotlang. 	
3)  Agar   va 	,, 0
abc ≥	2
abc	+	+=	 bo’lsa, 	
222 22 2	3
ab bc ca ab bc ca ++ + + + ≤ ni isbotlang. 	
4) Agar   va 	,, 0
abc ≥	1
abc	+	+=	 bo’lsa, 	
()	()	()	
22	3
abc bca cab +− + +− + + − ≥	2	 ni isbotlang. 	
5)  Agar   bo’lsa, 	,, 0
abc ≥	
4
ab bc ac a b c
c a b bcacab
+++
⎛⎞
++ ≥ ++ ⎜⎟	
+	++
⎝⎠	
 ni isbotlang. 	
 	
§6. Gel’der tengsizligi.  	
Teorema.	 11
1
pq +=	 shartni qanoatlantiruvchi barcha musbat 	p, q sonlar va  	aj, 	
bj,  	j = 1, ..., 	n 	sonlar uchun  	
                                      	
11
11 1	
|| ||	
nn n pq
p
ii i i
ii i	
ab a b	
== =	
⎛⎞⎛
≤ ⎜⎟⎜
⎝⎠⎝	
∑∑ ∑	
q⎞
⎟
⎠	
q≠	
                             (4) 	
tengsizlik  har doim to’g’ri. 	
Isboti. 	   deb faraz qilamiz (aks holda (4) tengsizlik 
bajarilishi ravshan). Y ung tengsizligini qo’llab  	
11
|| 0, || 0	
nn
p
ii
ii	
ab	
==	
≠	∑∑	
  15 
              	11
1
11	
|| ||	
n ii
i nn
pq
pq
kk
kk	ab
ab	
=
==	⎛⎞⎛
⎜⎟⎜
⎝⎠⎝	
∑∑∑	
⎞
⎟
⎠	
 ≤  	11
1
11	
|| ||
|| ||	n ii
i nn
pq
pq
kk
kk	ab
ab	
=
==	⎛⎞⎛
⎜⎟⎜
⎝⎠⎝	
∑∑∑	
⎞
⎟
⎠	
≤ 	
                                     ≤ 	
1
11	
|| |||| ||	pq
n
ii
nn	
p	q
i
kk
kk	
ab
paqb	
=
==
∑∑∑	=	11 1
pq	+	=	 	
ga  ega bo’lamiz.  Bu yyerdan  (4) tengsizlik kelib chiqadi. 	
Izoh	. Gyol’der tengsizligining 	p = 	q= 2 dagi  	22
11
nnn
ii i i
iii	ab a b	
===	
≤	
1	
∑	∑∑	 	
Koshi-Bunyakovskiy-Shvarts	  tengsizligi deb ataluvchi bir muhim  hususiy holini 
aytib o’tamiz. 	
1-misol	  (Minkovskiy tengsizligi). Ixtiyoriy musbat 	aj, bj   (	j = 1,...,	n) sonlar va 
natural 	
p  son uchun   	
                           	()	≤	1/	()	pp
kk	ab	+	∑	(	)1/
pp
k	a	∑	(	)1/
p
k	b	p	
∑	                            (5) 	
 tengsizlikni isbotlang 	
Yechilishi.	  (a	k +b	k)p = a	k (a	k +b	k)p-1 	+ b	k (a	k +b	k)p-1	 (k=1, 2, …, n	 ) tengsizlikni 
qo’shib,  	
                              ∑	 (a	k +b	k)p =	∑ a	k (a	k +b	k)p-1 	+ 	∑bk (a	k +b	k)p -1 	  ni olamiz. 	
(4) tengsizlikka  ko’ra  
                          	∑	 a	k (a	k +b	k)p-1 	≤ (	)1/
pp
k	a	∑	(	)	(1)1/	()	qp q
kk	ab	−	+	∑	, 	
                            ∑	bk (a	k +b	k)p-1 	≤(	)1/
pp
k	b	∑	(	)	(1)1/	()	qp q
kk	ab	−	+	∑	   	
larga ega bo’lamiz, bu yyerdan 	 q	(p-	1)	= p 	 tenglik yordamida (6)  tengsizlik kelib 
chiqadi.  	
  16 
Misollar 	
1) 	()	()	(	)	
11
22 22 2
11 2 2 1 2 1 2	
ab a b a a b b +≤+⋅+	2 Gyol’der tengsizligining 	
2	p	q
==	 holiga ko’ra o’rinli. 	
2)  	()	
55
555 555 22
333 333
11 2 2 3 3 1 2 3 1 2 3	
ababab aaa bbb ⎛⎞⎛
++ ≤++ ⋅++ ⎜⎟⎜
⎝⎠⎝	
⎞
⎟
⎠	
 Gyol’der 
tengsizligining 	
5
3, ,
32	np q	5	=	==	 holiga ko’ra o’rinli. 	
3) Agar   va 	,, 0
abc ≥	333	3
abc	+	+=	 bo’lsa,   ni 
isbotlang. 	44 44 4 4	3
ab bc ca ++ ≤	
4) Agar   bo’lsa,   
isbotlang. 	,, 0
abc ≥	()	222	212
a b c abc ab bc ac	+++ +≥ ++	
5)  Agar   va 	,, 0
abc ≥	1
abc=	 bo’lsa, 	
22
5	
33
abc abc	
2	+	+++
≥	 ni 
isbotlang. 	
 
                                     Amaliyot uchun masalalar. 	
1-masala.  Tengsizliklarni  isbotlang: 	
                             	!,
3	
n	n
nn⎛⎞
> ⎜⎟
⎝⎠	N	∈	;                                                                 (1) 	
                      	1
!,:
2	n	n
nn N	+
⎛⎞
<∀∈ ⎜⎟
⎝⎠	2
n	≥	;                                                      (2) 	
                      	2	!, :	
n	
nn nNn>∀∈≥	3	
n≥	
;                                                                 (3) 	
                       ;                                                             (4) 	1	!2 , : 3	n	nnN	−	>∀∈	
 
17 
                     	,
2	
nn	nn ne nN
e⎛⎞ ⎛⎞ << ∀∈
⎜⎟ ⎜⎟
⎝⎠ ⎝⎠	.                                                         (5) 	
 
(1) tengsizlikni isbotlaymiz.  
Induktsiya bazasi . 	1
n=	 da: 	
1	1
1!
3⎛⎞
> ⎜⎟
⎝⎠	 ga egamiz. Induktsiya bazasi 
isbotlandi.   	
Induktiv o’tish.    da 	nk=	!
3	
k	k
k⎛⎞
> ⎜⎟
⎝⎠	tengsizlik to’g’ri  deb faraz qilamiz. 
 da tengsizlik bajar ilishini isbotlaymiz: 	
1
nk =+	
 	
(1)	(1)
(1)!
3	k	k
k	+	+
⎛⎞
+> ⎜⎟
⎝⎠	.(1)! !(1) (1
3	
k	k
kkk k⎛⎞
+= +> + ⎜⎟
⎝⎠	)  	
ga egamiz. 	
(1)	1
3	k	k	+	+
⎛⎞
⎜⎟
⎝⎠	songa ko’paytiramiz va bo’lamiz:  	
1
(1)
(1)	13 (1)
3 (1) 3	k
kk
kk	kkk k	++
+	+⋅⋅+
⎛⎞	=	⎜⎟
+⋅
⎝⎠	 	
11	13 1
1
33
(1 )	kk
k	kkk	+	+	++
⎛⎞ ⎛⎞
=> ⎜⎟ ⎜⎟
⎝⎠ ⎝⎠
+	.  	
Bu yyerda quyidagi joriy hisoblashlarni bajaramiz:   	
2	
11(1)1 (1)...(1)1
(1 ) 1 ...
2! !	k
k	kkkk k k
kk k
kk
−−
⋅⋅ −+
+=++ ⋅++ ⋅	=	 	
11	
11 11 2 1
11 1 ... 1 1 ... 1
2! ! k
kkkk k	
<<	
−
⎛⎞ ⎛⎞⎛⎞⎛ ⎞
=++ − + + − − ⋅ ⋅ − < ⎜⎟ ⎜⎟⎜⎟⎜ ⎟
⎝⎠ ⎝⎠⎝⎠⎝ ⎠
���	�
 ���������� ���	�����������
	 	
 
18 
�N	
21	
21
11 11
23 2
123...2	
11 1 11 1
11 ... 11 ...
2! 3! ! 2
22	
k	
k
k	k	
−	
−
=< =<
⋅ ⋅⋅⋅ ⋅	=++ + + + <++ + + + <	
���	�
	
 	
21	
11 1 1 1 1 3
1 1 ... ... 1 3 (1 ) 3 1.
11
2 222
1(
2	k
kk k	
k
k	−	<++ + + + + + <+ = ⇒ + < ⇒ >
−+	
1)	
Matematik induktsiya printsip iga asoslanib,  ixtiyoriy   natural son uchun (1) 
tengsizlik bajariladi deb xulosa qilamiz. 	n	
(2) tengsizlikni isbotlaymiz.  
Induktsiya bazasi . 	2
n	=	 da:  	
(2) tengsizlikning chap tomoni: 	2! 2	=	; 	
(2) tengsizlikning o’ng tomoni: 	
22	21 3 9
2, 25
224+
⎛⎞⎛⎞
===
⎜⎟⎜⎟
⎝⎠⎝⎠	.  	22	 demak, 	,25	<	
induktsiya bazasi isbot bo’ldi.   	
Induktiv o’tish.   da 	nk=	1
!,
2	k	k
k	+
⎛⎞	2
k	<	≥
⎜⎟
⎝⎠	 tengsizlik to’g’ri  deb faraz 
qilamiz.   da 	
1
nk =+	
1	2)
(1)! ,
3	k	k
k	+	+
⎛⎞
+< ≥
⎜⎟
⎝⎠	2
ktengsizlik bajarilishini isbotlash 
kerak. 	
1
(1)! !(1) (1)
2	k	k
kkk k	+
⎛⎞
+=⋅+< ⋅+ ⎜⎟
⎝⎠	=	 ga egamiz. 	
1	2
2	k	k	+	+
⎛⎞
⎜⎟
⎝⎠	songa 
ko’paytiramiz va bo’lamiz:  	
11 11
11	2 (1)(1)2 2 2(1)
22 2( 2) ( 2)	kk
kk	k	
<	kk k	
kkk k k
kk	++ ++
++	+ + ⋅+⋅ + ⋅+
⎛⎞ ⎛⎞
== ⎜⎟ ⎜⎟
⋅+ +
⎝⎠ ⎝⎠	1
1	2( 1) 1
(2)	k
k	k
k	+
+	
⋅+	<	
+	
 
tengsizlik bajarilishi ni isbotlaymiz.  	
 
19 
1
11	2( 1) 2 1
2
(2) 21
1
11	k
kk	k
k k
kk	
1
k	
+
+	++	
⋅+
==⋅
+ +
⎛⎞ ⎛ ⎞
+
⎜⎟ ⎜ ⎟
++
⎝⎠ ⎝ ⎠	 	
1
2
0	11(1 )11
(1 ) 1 . . .2
112! 1 (1)	k
k	kkk
kk k
k	+
>	++⋅⎛⎞
+=++ ⋅++ ⎜⎟
++ +
+
⎝⎠
������������ ���	������������ �
	>	.	
1
1	11 2 1
(1 ) 2 2 1
12 1 2	k
k	k
kk	+
+	+
⎛⎞
⇒+ < ⇒⋅ <⋅= ⎜⎟
++ ⎝⎠	. 	
11	22
1
22	kk	kk	+	+	++
⎛⎞ ⎛⎞
<⋅= ⎜⎟ ⎜⎟
⎝⎠ ⎝⎠	. 	
Matematik induktsiya printsipiga asoslanib,  ixtiyoriy    natural son uchun 
(2) tengsizlik bajariladi deb xulosa qilamiz.  	2
n ≥	
(3) tengsizlikni isbotlaymiz.  
Induktsiya bazasi . 	3
n	=	 da:  	
(3) tengsizlikning chap tomoni: 	3! 6 36	==	; 	
(3) tengsizlikning o’ng tomoni: 	
3
2
32	=	7	.  	36 27	<	 demak, induktsiya bazasi 
isbot bo’ldi.  	
Induktiv o’tish.    da 	nk=	2	!,	
k	
kk k >	3
≥ tengsizlik to’g’ri  deb faraz qilamiz. 
 da  	
1
nk =+	
1
2	
(1)! ,	
k	
kkk	
+	
+> ≥	3  tengsizlik bajarilishini isbotlash kerak. 	
11 1
22
22
11
22	
(1) (1)
( 1) ! ! ( 1) ( 1) ( 1)
(1) (1)	
kk
kk
kk	
kkk
kkkkk k
kk	
++
+	
+⋅ +
+=⋅+> ⋅+⋅ =+ ⋅
++	
1
2 2
2
k
k ⋅
>
⋅	 	
  20 
(6) masalada    tengsizlik isbotlangan edi. Bu tengsizlikdan 
kelib chiqadi:  	1	(1),	nnnn n	+	>+ ∀≥	3	
1
22	
(1),	
nn
nn n	3	
+	
>+ ∀≥	. U holda 	nk	=	da 	
1
11 22
22
1
22 1	
(1)(1)1
(1) (1) (1 ) (1)
(1)	
k
kk
k	
kk
kk
k
kk	++
>	+⋅+
>+ ⋅ =+ ⋅+ >+
+⋅	
�� ���	 �� �
	
1 1
2 2
k	
k	
+	
.  	
Matematik induktsiya printsipiga asoslanib,  ixtiyoriy    natural son uchun (3) 
tengsizlik bajariladi deb xulosa qilamiz. 	3
n ≥	
(4) tengsizlikni isbotlaymiz.  
Induktsiya bazasi . 	3
n	=	 da:  	
(4) tengsizlikning chap tomoni: 	3! 6 36	==	; 	
(4) tengsizlikning o’ng tomoni: 	3124	−	=	.    demak,  induktsiya bazasi isbot 
bo’ldi.   	64>	
Induktiv o’tish.   (4) tengsizlik 	nk	=	 da  bajariladi  deb faraz qilamiz: 
.    da  	
1	!2 , 3	k	kk	−	>∀	≥ 3
k	1
nk =+	11	(1)!2 ,	k	k	+−	+	>	≥	  tengsizlik bajarilishini 
isbotlash kerak. 	
�N	
1
1	1
( 1) ! ! ( 1) 2 ( 1) 2 2 , 3
2	kkk	k
kkk k k	−
>	+	+=⋅+> ⋅+=⋅ > ≥	 . 	
Matematik induktsiya printsipiga asoslanib,  ixtiyoriy    natural son uchun (4) 
tengsizlik bajariladi deb xulosa qilamiz. 	3
n ≥	
(5) tengsizlikni isbotlaymiz.  
Induktsiya bazasi . 	1
n=	 da: 	
11	11
1!
2
e
e⎛⎞ ⎛ ⎞ <<
⎜⎟ ⎜ ⎟
⎝⎠ ⎝ ⎠	. Induktsiya bazasi isbot 
bo’ldi.   	
 
21 
Induktiv o’tish.  	nk	=	 da (5) tengsizlik to’g’ri  deb faraz qilamiz: 	
!
2	
kk	kk ke
e⎛⎞ ⎛⎞ <<
⎜⎟ ⎜⎟
⎝⎠ ⎝⎠	.     da   	1
nk =+	
11	11
(1)!
2	kk	kkke
e	+	+	++
⎛⎞ ⎛⎞
<+<
⎜⎟ ⎜⎟
⎝⎠ ⎝⎠	 tengsizlik 
bajarilishini isbotlash kerak. Bu tengsizlikning chap tomonini isbotlaymiz. 	
1 1	(1)
1
(1)! !(1)(1)
1	
k
kk
k	k
k
kk e
kkk k
eek
e	
+
+	⎛⎞
+⋅ ⎜⎟
+
⎛⎞ ⎛ ⎞
⎝⎠
+=⋅+>+⋅ = ⋅ ⎜⎟ ⎜ ⎟
⎝⎠ ⎝ ⎠+
⎛⎞
⎜⎟
⎝⎠	
=	 	
11
1
1	1(1) 1 1
(1) 1
1	kk kk
kk
e	kkkek ekee k
k	+++
+	++⋅⋅ + +
⎛⎞ ⎛⎞ ⎛⎞
== ⋅
⎜⎟ ⎜⎟ ⎜⎟
+
⎝⎠ ⎝⎠ ⎝⎠
⎛⎞
+
⎜⎟
⎝⎠	
�� ���	 �� �
	
1
k	
e	
+	
>	. 	
(5) tengsizlikning chap tomonini isbotlaymiz. 	
11
1	112
(1)! !(1)
22 2
1
2	
k
kk
k	k
kk k
kkke e e
k	
++
+	⎛⎞
⎜⎟
++
⎛⎞⎛⎞ ⎛⎞
⎝⎠
+=⋅+< = ⋅ = ⎜⎟⎜⎟ ⎜⎟
⎝⎠⎝⎠ ⎝⎠ +
⎛⎞
⎜⎟
⎝⎠	k	
× 	
11
1
1	21
(1) 1 2	kk	kk e
kk	+	+
<
≤	+
⎛⎞ ⎛⎞
×⋅ < ⎜⎟ ⎜⎟
++ ⎝⎠ ⎝⎠	
���	�

�� ���	 �� �
	
 . 	
Matematik induktsiya printsip iga asoslanib,  ixtiyoriy   natural son uchun (5) 
tengsizlik bajariladi deb hulosa qilamiz.  	n	
Eslatib o’tamiz,  (2) tengnsizlik va 	1
1	n	
e
n	⎛⎞	+	<
⎜⎟
⎝⎠	 tengsizlikdan foydalanib, 
 da  	
1
n >	
 
22 
111
1 2
!
22 2
2	nn
nn n
n	n
nn n n
ke e e
e
n
e	+
⎛⎞ ⎛⎞
+
⎜⎟ ⎜⎟
+
⎛ ⎞ ⎛⎞ ⎛⎞⎛⎞
⎝⎠ ⎝⎠
<=⋅⋅ =⋅⋅<⋅ ⎜ ⎟ ⎜⎟ ⎜⎟⎜⎟
⎝ ⎠ ⎝⎠ ⎝⎠⎝⎠
⎛⎞
⋅ ⎜⎟
⎝⎠	
2	
n	n	. 	
2-masala. Tengsizliklarni  isbotlang: 	
                              	
1	
22...2 21,	n
nта илдизx	nN	
+	
=+++ < + ∈	������ ���	 �� �� �� �
	;                                  (6)   	
                              	44...43,	n
nта илдизx	nN	=+++ < ∈	������ ���	 �� �� �� �
	.                                          (7) 	
(6) tengsizlikni isbotlaymiz.  
Induktsiya bazasi . 	1
n=	 da: 	22 2221	nx	=	+<+ +	=	 	
2	(2 1) 2 1
=+=	+	. Induktsiya bazasi isbotlandi.   	
Induktiv o’tish.  	n	 da 	k
=	
1	
22...2 2	k
kта илдизx	
+	
1	=	+++ < +	������ ���	 �� �� �� �
	tengsizlik to’g’ri  
deb faraz qilamiz.    da tengsizlik bajarilishini isbotlash kerak:  	
1
nk =+	
1
2	22...2 2	kkта илдизx	+
+	=+++ < +	���������	 �� �� �� �
	1. 	
1
12 1	22...2 221 2221 2	k
kта илдизx	+
+<+	=+++ <++<+ += +	���������	 �� �� �� �
	1 	
Matematik induktsiya printsip iga asoslanib,  ixtiyoriy   natural son uchun (6) 
tengsizlik bajariladi deb xulosa qilamiz. 	n	
(7) tengsizlikni isbotlaymiz.  
Induktsiya bazasi . 	1
n=	 da: 	1	4
x =<	9	. Induktsiya bazasi isbotlandi.   	
 
23 
Induktiv o’tish.  	n	 da 	k
=	44...4	k
kта илдизx	3	=	+++ <	������ ���	 �� �� �� �
	tengsizlik to’g’ri  deb 
faraz qilamiz.    da: 	
1
nk =+	1
(3)	444...4 43	kkта илдизx	+
<	3	=	++++ <+<	���������	 �� �� �� �
	. 	
Matematik induktsiya printsip iga asoslanib,  ixtiyoriy   natural son uchun (7) 
tengsizlik bajariladi deb xulosa qilamiz. 	n	
3-masala.  	
                                      	
5
5	555
,:
!5!6	n
n	
nNn
n	
−	
⎛⎞
≤∀∈ ⎜⎟
⎝⎠	6	≥	,                                      (8)    	
tengsizlikni  isbotlang. 	
Induktsiya bazasi . 	6
n	=	 da: 	
65
65	555
6! 5! 6	−	
⎛⎞
≤ ⎜⎟
⎝⎠	.Induktsiya bazasi isbotlandi.            	
Induktiv o’tish.  	
5
5	555
,
!5!6	k
k	
k
k	
−	
⎛⎞	6	≤	≥
⎜⎟
⎝⎠	 tengsizlik bajariladi deb faraz 
qilamiz.  	
15
15	555
(1)!5!6	k
k	
k	
+−
+	
⎛⎞
≤ ⎜⎟
+ ⎝⎠	tengsizlik bajarilishini  isbotlash kerak.  	
�N	�N	5
5	
51
15
5
55
6
5! 6	55555555
( 1)! ! 1 5! 6 6 5! 6	
k	
kk
kk	
kkk	
−	
5
5	−	+−
+
⎛⎞<
≤ ⎜⎟
⎝⎠	
⎛⎞ ⎛⎞
≤⋅≤ = ⎜⎟ ⎜⎟
++ ⎝⎠ ⎝⎠	. 	
Matematik induktsiya prints ipiga asoslanib ixtiyoriy    natural son uchun (8) 
tengsizlik bajariladi deb xulosa qilamiz. 	6
n ≥	
4-masala. Ixtiyoriy   natural son uchun   	n	
                                      	sin sinkx k x	≤	,                                                                (9) 	
tengsizlik o’rinli bo’ lishini isbotlang. 
 
24 
Induktsiya bazasi. 	1
n=	 da: 	sin1 1 sin x	x	≤	⋅	. Induktsiya bazasi isbotlandi.   	
Induktiv o’tish. 	n	 da  k
=	sin sin kx k x	≤	tengsizlik bajariladi deb faraz 
qilamiz.  	
sin( 1) ( 1) sin kxk+≤+	x	 tengsizlik bajarilishini  isbotlash kerak.   	
�N	
1
1
sin	
sin( 1) sin cos sin cos sin cos sin cos	
kx	
k x kx x x kx kx x x kx	
≤
≤
≤	
+=+≤⋅+	≤	��	�	 �
��	�	 �
	
(1)sinkx	≤	+	. 	
Matematik induktsiya printsipiga asoslanib,  ixtiyoriy   natural son uchun (9) 
tengsizlik bajariladi deb xulosa qilamiz.  	n	
   5-masala.  Ixtiyoriy  natural son uchun   	n	
                        	11 1
... 1
12 31
nn n +++
++ +	>	,                                                 (10) 	
tengsizlik o’rinli bo’ lishini isbotlang. 
          	11 1
...
12 3	
kS kk k
=+ ++
++ +	
1
  deb belgilab olamiz. 	
Induktsiya bazasi . 	1
n=	 da: 	1	
11 113
... 1
11 1 2 311 12
S	=	+++ =	>	
+	+⋅+	
.
 
Induktsiya bazasi isbotlandi.  	
Induktiv o’tish. 	n	k	=	 da 	11 1 ... 1
12 31	
kS kk k	=	+++	>	
+	++	
 tengsizlik 
bajariladi deb fa raz qilamiz.  	
1	
11 1 1 1 1
... 1
23 31323334	
kS kk k k k k	+	=+++ + + +++ + + + +	>	  	
tengsizlik bajarilishini  isbotlash kerak.  	
1	
11 1 1 1 1 11
...
23 31323334 11	
kS kk k k k k kk	+	
⎛⎞
=+++++++− ⎜⎟
++ + + + + ++ ⎝⎠	=	 	
 25 
110	
111 11111... 1
123 313233341	
S	
kk k k k k k k	
=> >	
=+ + ++ + + + −>
++ + + + + + +	
�������������	�����������
 �������������	���������� �
	
. 	
1111112
323334 1323433 kkkkkkk ++ −= + −
+++++++	= 	
(3 4)(3 3) (3 2)(3 3) (6 4)(3 4) 2
0
(3 2)(3 3)(3 4) (3 2)(3 3)(3 4)
kk kk kk
kkk kkk
+++++−++
==
+++ +++	>	
"	
 
ekanligidan  tengsizlik kelib chiqadi. Mate matik induktsiya printsipiga 
asoslanib, ixtiyoriy   natural son uchun (10) tengsizlik ba jariladi deb xulosa qilamiz.  	"0>	
n	
6-masala.  	222x	y z xy xz yz
++≥++	 tengsizlikni isbotlang, bu yyerda 	,,x	yz	- 
musbat sonlar.  	
Yechilishi. 	Ma’lum	  	2 2 22 22	2, 2, 2	x	yxyxzxzyz
+≥ +≥ +≥	yz
)	 tengsizliklarni 
qo’shib,  ushbu 	
22 22 22 222	()()()2( )2(x	y x z y z x y z xy xz yz
+++++≥ ++≥ ++	 
tengsizlikni olamiz. 	
7-masala.	 	444	(	)	x	y z xyz x y z
++≥ ++	 tengsizlikni isbotlang, bu yerda 	, ,x	yz	- 
musbat sonlar.  	
Yechilishi. 	1-masalaga ko’ra: 	
444 22 22 2222222	() ( ) ()	2	x	yz x y z xyyzxz
++= + + ≥ + +	  ga egamiz. Bu yerdan esa 	
2 2 22 22	(	)	x	y y z x z xyyz yzzx zxxy xyz x y z ++≥++= ++	 ni olamiz. 	
8-masala.	 	4444	4	x	y z u xyzu
+++≥	 tengsizlikni isbotlang, bu yerda 	, , ,x	yzu	- 
musbat sonlar.	
  	
Yechilishi. 	44 2244 2	2, 2	2	x	yxyzuz
+≥ +≥	u	
2	
 ga egamiz. Demak,  	
4444 22 2	22	x	yzu xy zu
+++≥ +	. Bundan tashqari 	22 22	2	x	yzu xyz +≥	u. Demak, 	
4444	4	x	y z u xyzu
+++≥	. 	
 
26 
9-masala.	 	2	11()()
24	x	yxyxyy
++ +≥ +	x tengsizlikni isbotlang, bu yerda 	
,x	y- musbat sonlar. 	
Yechilishi. 	Birinchidan,  	2	111
()()()(
242 xy xy xyxy	1
)
2	+	++=+ ++	. 	
Ikkinchidan,  	
2
xy	
xy
+
≥,  	111
244	x	yxy x
++ =+ ++ ≥ +	y. 	
Demak,  	2	11
()() ( )
24	x	yxyxyyxxyy
++ += + ≥ +	x. 	
10-masala.	 	0, 0	x	y
≥≥	 va 	2	x	y	+	=	 bo’lsin.  	
22 2 2	()
xy x y +≤	2
1 tengsizlikni isbotlang. 	
Aniqlik uchun	  	1, 1,0	x	y	ε	εε	=	+=−≤≤	 deb olamiz. U holda   
 	
22 2 2 2 2 2 2 22 2	( ) (1 )(1 )((1 ) (1 )) (1 )(2 2 )
xy x y	εε ε ε ε ε	+=− + −++ =− +	=	
222 24	2(1 )(1 )(1 ) 2(1 )(1 ) 2	εεε εε	=−−+=−−≤	 	
11-masala	.   va  b bir xil ishorali sonlar bo’lsin. a	
22 2 2 2
3	() 10 41 2
ab a b a ab b
++
≤	+	  ekanligini isbotlang. 	
Qachon tenglik bajariladi?    ekanligini hisobga olib va Koshi 
tengsizligidan foydalanib  quyidagiga ega bo’lamiz: 	0
ab >
22
22
3	2
() 10
4
23 1 aabb
ab ab
ab a abb
ab ab ++
++
++
⋅⋅ ≤ =	
2+	
. 	
Tenglik  esa 
 bo’lganda bajarilishini eslatib o’tamiz. 	ab=	
12-masala	.   va   birdan katta sonlar bo’lsin. 	,
ab	c	
22 2	
log ( ) log ( ) log ( ) 1	ab b	
bca
bac cab abc
ac ab bc
−+ −+ − + ≥	  tengsizlikni isbotlang. 	
 
27 
1, 1, 1
abc >>>	  va     	
22 2	
2, 2, 2
bca
ac b ab c bc a
ac ab bc +≥ +≥ +≥	 bo’lgani uchun   	
22 2	
log ( ) log ( ) log ( ) log (2 )	ab b a	
bca
bac cab abc bb
ac ab bc	−	+−+−+≥	−×	
=	
 
. 	
log (2 ) log (2 ) log log log 1	bc abc	cc aa b c a
×− −=	
 
13-masala	.   va  b musbat sonlar bo’lsin. a	
33 3	11
2( )( )
ab
ab
ba ab	+	≤++	 	
tengsizlikni isbotlang. 	
Yechilishi. 	Berilgan tengsizlikni kubga ko’taris h va soddalashtirishlardan so’ng 
quyidagiga ega bo’lamiz: 	
 	33	3( ) 4 ab a
ba b +≤++	b
a	. Koshi tengsizligiga ko’ra  	3	11 3 a
bb
++ ≥	a	  va 	
3	11 3
b
aa
++ ≥	b	 tengsizliklarni olamiz va ularni qo
’shib, qidirilayotgan tengsizlikni 
olamiz. 	
14-masala. 	
2
1	2131 (
31 4(1)	n
kn	nn nN
nkn	
=+	
)	+	≤≤ ∈
++	∑	 ekanligini isbotlang. 	
Yechilishi. 
22 22
11 11	111111131
()
31 2 31 2 (31)	nn nn
kn kn knk n	n
knk knk kkn	
=+ =+ =+= +	
+
==+=≤
+− +− +−	
∑∑ ∑ ∑	k	
; 	
1)	
22
2	(3 1) 3 1 (3 1)
(3 1 ) ( )
44 4
nn n
kn k k
++ +
+− = − − ≤	  tengsizlikdan 	
 	
2
2
1	1314(31)2
2(31)2(31)3	n
kn	nnn
kn k n n	
=+	
++ ≥=
+− + +	
∑	1
n
  ekanligi kelib chiqadi; 	
 
28 
2)   	(3 1 ) 2 ( 1) (2 )( ( 1)) 0 ( 1 2 )
kn k nn nkk n n k n +− − + = − − + ≥ +≤ ≤	
tengsizlikdan 	
2
1	131(31)32 (31)4(1)4(1	n
kn	nnnn
kn k nn n	
=+	
1 )	+	++
≤=
+− + +	
∑	 ekanligi kelib chiqadi. 
Demak 	
2 1	2131 ()
31 4(1)	n
kn	nn nN
nkn	
=+	
+	≤≤ ∈
++	∑	. 	
15-masala	.   va  musbat sonlar bo’lsin.   
tengsizlik    va  faqat biror uchburchak tashkil qilganda gina bajarilishi 
mumkinligini isbotlang. 	,
ab	c	444 222	2( ) ( ) abc abc ++ < ++	2	
0	
=	
,
ab	c	
Yechilishi.	 Ravshanki, bizning tengsizligimiz  	
444 22 22 22	222
abc ab bc ac ++− + + <	 tengsizlikka teng kuchli. Oxirgi 
tengsizlikning chap tomonini almashtiramiz:  	
444 22 22 22 222 22
2 22 2 22 22 22	2224
( 2 )( 2 ) (( ) )(( ) )
()()()()
abc ab bc ac abc ab
abc ababc ab ab c ab c
a b ca b ca b ca b c++− + + = +−− =
=+−− +−+ =−− +−
=−+−−+++−	
 	
Demak,  berilgan tengsizlik   va  biror uchburchak tashkil qilganda aniq 
ravishda bajariladigan ushbu 	,
ab	c	
( )( )( )( ) 0 abcabcabcabc	−	+−−+++−>	 
tengsizlikka teng kuchli.  	
Endi faraz qilamiz,   bu tengs izlik bajariladi, biroq    va  biror uchburchak 
tashkil qilmaydi. U holda 	,
ab	c	
, , ,
abcabcabcabc	−	+−−+++−	 sonlardan kamida 
ikkitasi manfiy.  va 	
0
abc +−<	0
bca	+	−<	 bo’lsin. Bu yerdan masalaning shartiga 
zid bo’lgan   tengsizlikni olamiz. 	
2 0b <	
16-masala	.    –   ketma-ketlikning biror o’rin 
almashtirishi bo’lsin.  	12,,...,	n	bb b	12,,...,	n	aa a	
                  	12 12	
11 1
( ) ( )...( ) 2	n
n
n	aa abb b
++ +≥	  	
 
29 
tengsizlikni isbotlang. 	
Tengsizlikning isboti	 Koshi tengsizligidan darhol kelib chiqadi: 	
    	12
12
12
12 12 12	...
11 1
( ) ( ) ...( ) 2 2 ...2 2
...	n
nn
n
nn	aaaa
aa
aa a
bb b bbbbbb
++ +≥
= =	
n	
. 	
17-masala.    	106532	10	x	xxxxx
++++++>	 tengsizlikni isbotlang. 	
Yechilishi. 	Ravshanki,  tengsizligimiz 	0	x≥	 da bajariladi, shuning uchun  	
xmanfiy bo’lgan qiymatlarni qarash etarli. 	1	x≤	−	 bo’lsin, holda  	10 5	0	x	x	+	≥	,  	
63	0	x	x
+≥	, 	2	0	x	x
+≥	 va	  	1	 tengsizliklarni qo’shib, iz lanayotgan tengsizlikni 
olamiz.  	0
>	
Endi 	1 0	x	−< <	 bo’lsin. Qism hollarni qaraymiz: 	
a)  	5	10	x	x
++>	. U holda 	  	
106532 1062 3 5	11(
xxxxxx xxx x xx ++++++= +++++ ++>	1) 0	. 	
b) 	5	10	x	x
++≤	. U holda 	  	
106532 55 2355	1 ( 1) ( ) (1 ) ( 1) 0
xxxxxx xxx xx xxxx + + + + ++= ++ + + + + > ++ ≥	. 	
18-masala	. 	1, 1	x	y
>− >−	va  bo’lsin.  	1
z >−	
222
22	11 1 2
111 xyz
S
yz zx xy
++ +
=++
++ ++ ++	
2≥	 tengsizlikni isbotlang.  	
22
2	11
11	
2	
x	x
yz y z
++
≥
++ + +	 tengsizlik yordamida  	,x	y va   	z  ning manfiy 
bo’lmagan qiymatlarini qarash etarli. 	
222 22 2 22	11 1 ()
111 111 zx xy yz z x y
S
yz zx xy yz zx xy
++ ++ + +
=++− ++
++ ++ ++ ++ ++ ++	
2	≥	
222
3 22 2 2 2	11 1
3(
111 1 1 1 zx xy yz z x y
yz zx xy yz zx xy
++ ++ + +
≥⋅⋅−++
++ ++ ++ ++ ++ ++	
2)≥	
22 2	3( ).
111 zxy
yz zx xy
≥− + +
++ ++ ++	 	
  30 
Endi 	122	1
111 zxy
S
yz zx xy
=++
++ ++ ++	2≤	 ekanligini isbotlaymiz. 	0	x=	 holni 
qaraymiz. U holda. Demak, 	
0	xyz	=	 da 	1	1
S≤	. 	
0	xyz ≠	  holda  	
1	
11 111
11 1
() () ( ) 2 2 2
S
zy xzy
xz y	1
x	
x	xzz yyxz
=++ ≤++
++ ++ + + + + +	y	
. 	
,
xy
a
yz ==	b	 va 	z
c
x =	 deb belgilab olamiz. 	1
abc=	 va 	1	
111
222
S
abc
=++
+++	 
ekanligi ravshan. U holda  	
1 1 1 (2 )(2 ) (2 )(2 ) (2 )(2 )
222 (2)(2)(2) bc ac ab
abc abc
++++++++
++=
+++ +++	=	
12 4( ) ( )
84( )2( ) abc abbcac
abc abbcac abc ++++++
=≤
++++ +++	 	
222
3	
12 4( ) ( ) 12 4( ) ( )
1.
12 4( ) ( )
84( )( )3 a b c ab bc ac
a b c ab bc ac
abc abbcac
a b c ab bc ac a b c abc ++++++
++++++
≤=
++++++
+++++++ +	=	
 
Demak,  . 	1	1
S ≤	
19-masala	. Ixtiyoriy musbat 	, ( 1, 2,..., )jjab j n	=	 sonlar uchun    	
    	11 11... ... ( )...( )	nnn
nn naa bb a b a b+≤+ +	n	 	
tengsizlik o’rinli ekanligini isbotlang. 
Yechilishi.	 Gyuygens tengsizligiga asoslanib  	11
11	1...1 1 ...	
n
nn n
nn	
aa aa bb bb ⎛⎞
⎛⎞
⎛⎞
++≥+ ⎜⎟
⎜⎟
⎜⎟
⎜⎟
⎝⎠ ⎝⎠
⎝⎠	 
yoki 	
(	)	11 1 1	( )...( ) ... ...	
n
nn
nn n n	
ab a b aa bb++≥ +	 ni olamiz. Bu yerdan esa 	
11 11... ... ( )...( )	nnn
nn naa bb a b a b+≤+ +	n	 kelib chiqadi. 	
 
31 
20-masala	. Ixtiyoriy  musbat sonlar uchun 	12,,...,	n	aa a	
2
12
12	11 1
(...) ..	
n
n	aa a n
aa a
⎛⎞
+++ + ++ ≥ ⎜
⎝⎠	⎟	 tengsizlik o’rinli bo’lishini isbotlang. 	
Yechilishi.	 Koshi–Bunyakovskiy–Shvarts  tengsizligiga ko’ra   	
()	
2
2 12
12
2
22
22 2
12 2
12	
11 1 ...
11 1
( ) ( ) ... ( ) ..	
n
n
n n	na a aaa a
aa aa aa a
⎛⎞
=⋅+⋅++⋅ ≤ ⎜⎟
⎜⎟
⎝⎠
⎛⎞⎛⎞
⎛⎞⎛ ⎞
⎜⎟
≤+++ ⋅ + ++ ⎜⎟
⎜⎟⎜ ⎟
⎜⎟⎜ ⎟ ⎜⎟
⎜⎟
⎝⎠⎝ ⎠ ⎝⎠
⎝⎠	
 	
ni olamiz. 	
21-masala.	  (	)2
12 12
22 2
12 1334 1	...
...
...	n n
n	aa a aa a
aa a aa aa aa +++
≤+ ++
+++ + + +	
2	
n	
      	
tengsizlikni isbotlang,  bu yerda  . 	0 ( 1, 2,..., )	kak≥=	
Yechilishi.	 Koshi–Bunyakovskiy–Shvar ts tengsizligiga ko’ra  	
2
2 1
12 11312
13 12	
( ... )( ) ...( )	n
n n	aa
aa a aaaaaa
aa aa
⎛⎞
+++ = ⋅ + ++ ⋅ + ⎜⎟
⎜⎟
++
⎝⎠	≤	
()	12
11 3 1 2
13 3 4 12	... ( ) ... ( )	n
n	aa aaa a a a a
aa a a aa
⎛⎞
≤+++ +++≤ ⎜⎟
++ +
⎝⎠	 	
22 22
12
12 13
13 3 4 12
2 2 22 22 221112	11
... ( ) ( ) ...
22
11 11 ( )()()()
22 22	n
nn n n n	aa a
aa aa
aa a a aa
a a aa aa aa	
−	
⎛⎞ ⎛⎞
≥+++ ++++ ⎜⎟ ⎜⎟
++ + ⎝⎠
⎝⎠
⎛⎞ ⎛
+ ++++ +++= ⎜⎟ ⎜
⎝⎠ ⎝	+
⎞
⎟
⎠
 	
22
12
1
13 3 4 12	... (2 ... 2 )	n n	aa aaa
aa a a aa
⎛⎞
=+++ +++ ⎜⎟
++ +
⎝⎠	. 	
 
 	
  32 
Mashqlar 	
1.	 	Agar  ,  bo’lsa, u holda  
tengsizlik o’rinli bo’ lishini isbotlang. 	,,, 0, ,
abcd c d ac d b >+≤+≤	ab bc ab+≤	
2.	 	Agar  	,,xy	z lar  xaqiqiy sonlar to’p lamiga tegishli bo’lsa,  	
222x	y z xy yz xz
++≥++	 tengsizlikni isbotlang. 	
3.	 	Agar  	1	xy	z
++=	 bo’lsa,   	222	1
3
xyz	+	+≥	 ni isbotlang. 	
4.	 	Agar  
 bo’lsa, 	0
ab >	2
ab
ba	+	≥	  tengsizlikni isbotlang. 	
5.	 	Xar qanday       (	2
n ≥	nN∈	) larda   	22 2
11 1
1.
23 n	+	++ <…	 tengsizlik o’rinli 
bo’lishini isbotlang. 	
6.	 	Xar qanday      (	n	)  larda   	2
n ≥	N
∈	11 1
1
223 2	
n	
n <+ + + +
−	…	
1
 tengsizlik 
o’rinli bo’lishini isbotlang 	
7.	 	 bo’lsa,  	nN ∈	
()	
2	
11 1
925 21n
+++
+	…	   tengsizlikni isbotlang. 	
8.	 	 bo’lsa,  	nN∈	11 1 1
212 2 nn n
<+ ++<
++	…	3
4	
2	
  tengsizlikni isbotlang. 	
9.	 	Agar     bo’lsa,  
  tengsizlikni isbotlang. 	22 222 2
12 12	1	nn	aa a bb b+++ =+++=	……	
11 2 2	11	nn	ab a b a b
−≤ + + + ≤	…	
10.	 Agar      bo’lsa,   
 tengsizlikni isbotlang. 	12 1 2	1, , , 0	nn	aa a a a a⋅⋅ = >	……	
()( )	()	12	11 1	n
n	aa a
++ +≥	…	
11.	 	 Agar     bo’lsa,     	1
ab +≥	44	1
8
ab	+	≥	  tengsizlikni isbotlang. 	
 
33 
12.    musbat sonlar  va  birdan farqli bo’lsa,  	,
ab	log log 2	abba +≥	  
tengsizlikni isbotlang.  	
13.     	
2
11 2
log log 2	
π	π	
+	>	  tengsizlikni isbotlang. 	
14. Agar     bo’lsa,   	nN∈	11 1
1
1! 2 ! ! n	3	+	+++ <	…	  tengsizlikni isbotlang. 	
15.  	Agar    bo’lsa, 	nN∈	(	)	
11 1
2111 2
23
nn
n
+− <+ + + + <	…	 
tengsizlikni  isbotlang. 	
16.  Agar            (	12
kk k	aa a	−	=+	−	3, 4, .
k	=	…	)    bo’lsa, 	
2345	
11 2 3 5
2
2 2222 2	n
na
++++++<	…	 tengsizlikni  isbotlang. 	
17. Agar  	n	  bo’lsa,  	N
∈	11 1
12
12 31
nn n	<	+++ <	
+	++	
…	  tengsizlikni  
isbotlang. 	
18.  Agar   bo’lsa,  	0, 1, 2, ,	iai>=	…	n	12
12
n
n
naa a aa a
n	+	++ ≥⋅⋅… …	 
tengsizlikni  isbotlang. 	
19. Agar             bo’lsa, 	0, 1, 2, ,	iai>=	…	n	
()	2
12
12	11 1	
n n	aa a n
aa a
⎛
+++ + ++ ≥ ⎜
⎝⎠	……	
⎞
⎟	
 tengsizlikni  isbotlang.	 	
20.	 Agar       bo’lsa,  	0
a >	
22
221	1	n
n	aa a n n
aa a	
−	
1	+	+++ +
≥	
+	++	
…
…	  tengsizlikni  isbotlang. 	
  34 
21. Agar   	12	02	n	
π	αα α	<< << <	…	  bo’lsa,  	
12
1
12	sin sin sin
cos cos cos	n n
n	tg	tg	α	αα	α	α
αα α	+++
<
+++	…
…	<	 tengsizlikni  isbotlang. 	
22. Agar  	n	  bo’lsa,  quyidagi tengsizlikni  isbotlang. 	N
∈	
() ( )	()	2! 4! 6! 2 ! 1 !	n	nn
⋅⋅⋅ ⋅ ≥ +	…	 	
23. Agar  	0
2	π	ϕ	<<	  bo’lsa,   	1
2
ctg ctg	ϕ	ϕ	≥+	 tengsizlikni  isbotlang. 	
24. 
butun sonlar va  	,
kl −	2n	α	βπ	≠	±+	 bo’lsa, 	
22	cos cos cos cos
cos cos
kl lk
kl	αβ α β
αβ	−	≤	−
−	 tengsizlikni  isbotlang. 	
25. Agar    bo’lsa,  	()	 tengsizlikni  isbotlang. 	2
n >	2!	n	n >	n	
26. Agar     va 	,, , 0
ab pq >	,p	q	 ratsional sonlar 	11
1
pq	+	=	 shartni 
qanoatlantirsa   	
pqab
ab
p	q
≤+	
  tengsizlikni  isbotlang. 	
27. Agar  	n	  bo’lsa,  	N
∈	1
21	n	
n
⎛⎞	
3	<	+<
⎜⎟
⎝⎠	 tengsizlikni  isbotlang.  	
28. Agar     bo’lsa,  quyidagi tengsizlikni  isbotlang.	0
n >	!
3	
n	n n
⎛⎞
<
⎜⎟
⎝⎠	 	
29.Agar   bo’lsa,  quyidagi tengsizlikni  isbotlang. 	()	  	0
n >	()	
3	3!	n	nn >	
30. Agar  	12	;0,1,2,ni	,	s	aa aa i
=+ ++ > =	……	n bo’lsa,  	
()( )	()	
2
12	
11 1 1 1! 2 ! !	
n
n	s	s
aa a
n
++⋅⋅+≤++++	…	s	…	 tengsizlikni  isbotlang. 	
 
35 
31.    a) 	2	
13
1
a
aa ≤
++	;                                         b)  	2	
1
2
49 a
aa ≤	
−	+	
; 	
          s)  	2
2	1
aa
a
a
+≥+	1	;                    
                d)  	
4
2	16 2
4
a
a
a +
≥
+	
. 	
32.    a) 	2	93025aa −+≥	0;                                b)  	2	25 10
bb +≥	; 	
          s) 	2	452 2
aa a −+≥ −	;                              d)  	2	2106
bb b	1	−	+≥ −	. 	
33.    a)  ;                                b) 	44 3ab abab+≥ +	3	0	44 22	()
ababab	+	++	≥	
5	
; 	
          s)  ;                            d)  	6 6 42 24a b ab ab+≥ +	66 5ab abab	+	≥+	. 	
34.  Agar    va    bo’lsa,  u holda quyidagilarni isbotlang:  	0
a ≥	0
b ≥	
          a)  ;                                b)  ; 	33 2ab abab+≥ +	2
3	)	
4 3	
33	()4(ab a b +≤ +	
          s)  ;                               d)  	55 4ab abab+≥ +	55 32 2ab abab	+	≥+	. 	
35.  Agar    va    bo’lsa,  u holda quyidagilarni isbotlang:  	0
a ≥	0
b ≥	
          a)  ;                                b) 	33 2ab abab−≥ −	2	)	33	3(
ab abab	−	≥−	; 	
          s)  ;                               d)  	33 2 2ab ab a−≥ −	b	4	55 4ab abab	−	≥−	. 	
36.    va     sonlarning ixtiyoriy qiyma tlarida tengsizlik o’rinli                                        	a	b	
          bo’lishini isbotlang:  
          a)  ;                                	43 22 34	22 2
aabababb −+ − +≥	0	
2)
2)	
          b)  . 	43 22 3 4	4 8 16 16 0
aabab ab b −+ − +≥	
37.  Ixtiyoriy  , va   sonlar uchun  tengsizlik  	,,
abc	d	
          a)  ;                                	222 2	()()(a b c d ac bd −−≤−	
          b)  . 	222 2	()()(a b c d ac bd ++≥+	
          o’rinli  bo’lishini   isbotlang,  jumladan  tenglik bajariladi shu                     
          holda va faqat shu holdaki,  qachonki 	ad bc	=	. 	
 
36 
38.  shartni qanoatlantiruvchi ixtiyoriy 	a	 va 	b sonlar uchun  
  tengsizlik o’rinli bo’lishini isbotlang. 	0
ab ≥	
222	()(ab ab −≥−	4)	
39.  Agar     bo’lsa,  	ab<	
2
ab
a	
b	+	<<	   bo’lishini isbotlang. 	
40.  Agar     bo’lsa,  	abc<<	
3
abc
a	
b	+	+	<	<	   bo’lishini isbotlang. 	
41.  Agar     ekanligi ma’lum. 	0, 0, 0, 0
abcd >>< <	
          	,,,,,, ,, ab ac c b ac abd
abc bcd abcd
c d ad cd bd c	    	
ifodalar qanday ishoralarga   ega  bo’ladi ?  
42. Agar   	
a)   va 	b  bir xil ishorali sonlar; 	a	
b)    va 	b  turli ishorali  sonlar  ekanligi ma’lum bo’lsa, 	a	
          	ab	 ko’paytma  va 	a
b	  kasr qanday ishoralarga  ega   bo’ladi ?                            	
43. Agar   	
a) ;     b) 	0
ab >	0
a
b >;      s) 	0
ab	<	;        d) 	0
a
b	<	;     e)  ;    	2	0
ab >	
f)  ;    g) 	2	0
ab <	2	0
a
b <  ekanligi ma’lum bo’lsa, 
 va 	bsonlarning ishorasini 
toping. 	a	
44.    ekanligi ma’lum bo’lsa,   ifodaning ishorasi qanaqa ? 	2
a >	
a) 	3	;     b) 	10	;      s) 	6 2	a−	5a
−	2 a	−	;        d) 	(2	)(1
aa	)	−	−	;     e) 	2
1
a
a	−
−	
;    	
f)  ;        g) 	2	(3)(1aa −−	)	5
2 a−
−	
;       h) 	(1)(2
(5 )
aa
a	)	−	−
+	. 	
45.    ekanligi ma’lum bo’lsa,   ifodaning ishorasi qanday bo’ladi ? 	3
a <	
 
37 
a) ;     b) 	12	;      s) 	2	2a −	6 8	4a
−	a	−	;        d) 	(5	)(3
aa	)	−	−	;     e) 	4
3 a a	−
−	
;    	
f)  ;        g) 	2	(1)( 2aa −−	)	2
3 a
−	
;        h) 	1
( 2)(3 ) a
aa−	
−	−	
. 	
46.  Agar   a)  ;         b) ;        s) 	1	1
a <	4
a >	4	a	<	<	;      d)  ekanligi ma’lum 
bo’lsa  	
(1	 ifoda qaysi ishoraga ega bo’ladi ? 	
5
a >	
)( 4
aa −−	)	
47. Agar    va    bo’lsa,  u holda 	1
a >	1
b >	1
ab a b+	>+	 ekanligini       isbotlang. 	
48. Agar    va    bo’lsa,  u holda  	ab>	2
b <	2	(2) 2
ba b a	+	>+	    ekanligini      
isbotlang. 	
49. Agar    bo’lsa,  u holda  	1
ab >>	22 22ab b a ab a b	+	+> + +	    ekanligini           
isbotlang. 	
50. Agar   bo’lsa, u holda  	2
ab <<	22 22	24 24
ab b a ab a b	+	+<++	    ekanligini           
isbotlang. 	
51. Agar 	1	 bo’lsa, u holda  2	0	ab
<<<	222 2	222
ababaabb ab	−	−−+ + − >	  
ekanligini           isbotlang. 	
52. Agar   bo’lsa, u holda  	abc≥≥	222()()( )
ab c bc a ca b	0	−	+−−−≥	    ekanligini           
isbotlang. 	
53.	
3	
sin ( 0) 6
x
xx x >− >	 tengsizlikni isbotlang. 	
54. Sonlarni taqqoslang. 
     a) 	ln 2004
ln 2005	   va    	ln 2005
ln 2006	 	
     b)     va  	cos(sin 2006)	sin(cos 2006)	
55. 	0	x>	  uchun  	2	12ln	x	x
+≤	 tengsizlik o’rinli bo ’lishini isbotlang. 	
56. 	12,,...,	n	x	x	x	 musbat sonlar bo’lsin.   	
 
38 
1
1
1	
... ,0
()
... , 0	n
n n	xx
f n
xxαα α	
α
α
α	
⎧⎛⎞ ++
⎪	
≠	⎪ ⎜⎟
= ⎨
⎝⎠
⎪	
⋅	⋅=
⎪
⎩	
 	
funtsiyaning monoton o’suvchi bo’lish ini isbotlang. Bundan tashqari  	f funktsiya 
qat’iy o’suvchi bo’ladi, faqat va faqat shu holdaki, qachonki 	
jx	sonlarning hammasi 
o’zaro teng bo’lmasa. 	
57.	33
sin sin sin
8	αβγ	≤	 tengsizlikni isbo tlang, bu yerda 	,	α	β	 va 	γ	 biror 
uchburchakning ichki burchaklari. 	
58.   lar 	12,,...,	n	aa a	1
(0 : ) ( 1,..., )
2	kak	n	∈=	12	... 1	n	aa a	 va 	+	++ =	 xossalarga ega 
bo’lgan sonlar bo’lsin. 	
2
22 2
12	11 1 1 1 ... 1 ( 1)	n
n	n
aa a ⎛⎞
⎛⎞⎛⎞
−− −≥− ⎜⎟
⎜⎟⎜⎟
⎝⎠⎝⎠ ⎝⎠	 ekanligini isbotlang. 	
59. Ixtiyoriy   musbat sonlar uchun   	, ,
abc	
22 22 22 3 3
22 2
ab bc ac a b c
abc
cabbcac
+++
++≤ + + ≤ + +	
3
ab	
 	
tengsizlik bajarilishini isbotlang. 
60. Agar 1  bo’lsa, u holda  	abc
<≤≤	
33	1111
()
ln ln ln 3 ln ln ln ln ln ln abc
abcabc
abc
a b c a b c c b c bc ac ab
⎛⎞
++≤++ ++ ≤++ ++ ⎜⎟
⎝⎠	3
   ? 	
 
bo’lishini isbotlang. 
61. 	23 232,(2,3,4,...nn	n
−++≥ =	) ekanligini isbotlang. 	
62. Ixtiyoriy     nomanfiy sonlar uchun   	, ,
abc	
        	( )( )( ) 8abbcca abc +++≥	
tengsizlik o’rinli bo’ lishini isbotlang. 
 
39 
63. Ixtiyoriy  musbat sonlar uchun 	12,,...,	n	aa a	
12 2 3 11
34 1 2	... 2	nn n	aa a a a a a a
n
aa a a	−	++ ++ +++ +≥	 	
tengsizlik o’rinli bo’ lishini isbotlang. 	
Yensen tengsizligi: 	
64.	 	()()	
22
22
12
3	(, 0)	ii iii i	
aa
ab abab
a +
++≤+	
∑∑∑	>	 tengsizlikni  	
isbotlang. (Ko’rsatma: 	2	1
yx =+	). 	
65.  	
1	1	
n
i
i i	a
Sa n	
=	
≥
−−	∑	
n	   tengsizlikni isbotlang, bu yerda 	12	... , 0	ni	Sa a a a	=	++ >	. 	
66.    tengsizlikni isbotlang. 	1
11	() , 1,	
nn pp p
ii
ii	
xn xpx	−
==	≥⋅ > >	∑∑	0	i
2	36	
c	
Koshi-Bunyakovskiy   tengsizligi: 
67.    tengsizlikni isbotlang, bu yerda    lar 
uchburchakning tomonlari;       lar uchburchakning shu tomonlarga 
tushirilgan balandliklari;   uchburchakning yuzi. 	222222	()( )	abc	abchhh S++ ++ ≥	, ,
abc	
,,abhhh	
S	
66.	 	22	(1 ) (1 ) 1, 1, 1
ab a b a b +− −≤ ≤ ≤	 ekanligini isbotlang	. 	
68. Agar     bo’lsa,   	2 3 14
abc ++=	222	14
abc	+	+≥	 bo’lishini isbotlang. 	
Koshi tengsizligi: 
69.  nomanfiy sonlar uchun   	, ,
abc	222	1
abc	+	+=	 shart bajariladi. 	3
abc ++≤ 	
ekanligini isbotlang. 
70.   b e r i l g a n .   	,, 0, 1
abc a b c ≥++=	(1 ) , (1 ) (1 ) 8 , 1abcabcabc	−	−−≥ ++=	 
tengsizlikni isbotlang. 	
71. Isbotlang:   	( )( )( ), (1 )(1 )8 , 1
abc a b c a c b b c a b c abc a b c ≥ +− +− +− − − ++=	
 
40 
72. 	, , 0, 1x	y z xyz≥	=	 berilgan. 	(3 2 )(3 2 )(3 2 ) 216	x	yz y zx z xy	+	+++++≥	 ni 
isbotlang. 	
Bernulli tengsizligi: 
75. 	22
44	111 1 xxx x
−+++−++=	4  tenglamani yeching. 	
76. 	4411 xx
−+ +=	4  tenglamani yeching. 	
77. 	
46
6
4	
1111
32 4	
36	
x	x
x ⎛⎞⎛
−+ += − + + ⎜⎟⎜
⎝⎠⎝	x⎞
⎟
⎠	  tenglamani yeching. 	
78. 	10 10 10 10
444 4	1111
() () ( ) ( ) ( )
ab c d
abcd
bcd a abcd ++ + ≥ +++	 tengsizlikni isbotlang.	 	
 
41 
Manbaalar ro’yxati 	
 	
1.	 Hojoo Lee. Topics in Inequalities-Theorems and Techniques. Seoul: 2004. 	
2.	 Andreescu T., Dospinescu G ., Cirtoaje V., Lascu M. Old and new inequalities. Gil 
Publishing House, 2004. 	
3.	 Mathematical Olympiads, Problems a nd solutions from around the world, 1998-
1999. Edited by Andreescu T.  and Feng Z. Washington. 2000. 	
4.	  Math Links, http://www.mathlinks.ro 	
5.	  Art of Problem Solving, http://www.artofproblemsolving.com 	
6.	  Math Pro Press, http://www.mathpropress.com 	
7.	  K.S.Kedlaya, A<B, http://www.unl.e du/amc/a-activities/a4-for-students/s-
index.html 	
8.	  T.J.Mildorf, Olympiad Inequalities, 	http://web.mit.edu/tmildorf	 	
9.	 Алфутова  Н .Б .,  Устинов  А.В .  Алгебра  и  теория  чисел . Сборник  задач  для  
математических  школ . М .: МЦНМО , 2002. 	
10.	 А. Engel. Problem-Solving Strategies. Part s 1,2 . Springer-Verlag New York Inc. 
1998.  	
11.	 Ayupov Sh., Rihsiyev B., Quchqorov O. «Ma tematika olimpiadalar masalalari» 
1,2 qismlar. T.: Fan, 2004 	
12.	 Математические  задачи , 	http://www.problems.ru	 	
13.	  Беккенбах  Э ., Беллман  Р . Неравенства . — М.: Мир , 1965.  	
14.	  Беккенбах  Э ., Беллман  Р . Введение  в неравенства . — М.: Мир , 1965. 	
15.	  Коровкин  П . П . Неравенства . — Вып. 5. — М.: Наука , 1983. 	
16.	  «Математика  в  школе » (Россия ),  « Квант» (Россия ), «Соровский  
образовательный  журнал » (Россия ),  “Crux mathematicor um with mathematical 
Mayhem” ( Канада), “Fizika, matematika va informatika” ( Ўзбекистон) 
журналлари .  	
 
 
 
42

8 -MAVZU . SONLI TENGSIZLIKLAR VA ULARNING XOSSALARI. TENGSIZLIKLARNI ISBOTLASH. Reja. 1. Sonli tengsizliklar 2. Sonli tengsizlik larning asosiy xossalari 3. O’rtacha qiymatlar va ular orasidagi munosabatlar 4. Umumlashgan Koshi tengsizligi. 5. Umumlashgan Yung tengsizligi 6. Gel’der tengsizligi. Kalit so ’zlar : Sonli tengsizlik , o’rtacha qiymatla r, Koshi tengsizligi , Yung tengsizligi , Gel’der tengsizligi 1. Sonli tengsizliklar va ularning asosiy xossalari Sonlarni taqqoslash amaliyotda keng qo’llaniladi. Masalan, iqtisodchi rejada ko’zda tutilgan ko’rsatkichlarni amaldagi ko’rsatkichlar bilan taqqos -laydi, shifokor bemorning haroratini sog’lom kishining harorati bilan taqqos laydi, chilangar yo’nayotgan buyumining o’lchamlarini andaza bilan taqqos -laydi. Bu uchala holda qandaydir sonlar o’zaro taqqoslanadi. Sonlarni taqqos -lash natijasida sonli tengsizliklar hosil bo’ladi. 1.1.1 -Ta’rif. Agar &#3627408462; − &#3627408463; ayirma musbat bo’lsa, u holda &#3627408462; son &#3627408463; sondan katta deyiladi. Agar &#3627408462; − &#3627408463; ayirma manfiy bo’lsa, u holda &#3627408462; son &#3627408463; sondan kichik deyiladi. Agar &#3627408462; son &#3627408463; sondan katta bo’lsa, bu &#3627408462; > &#3627408463; kabi; agar &#3627408462; son &#3627408463; sondan kichik bo’lsa, bu &#3627408462; < &#3627408463; kabi yoziladi. Shunday qilib, &#3627408462; > &#3627408463; tengsizlik &#3627408462; − &#3627408463; ayirma musbat, ya’ni &#3627408462; − &#3627408463; > 0 ekanini bildiradi, &#3627408462; < &#3627408463; tengsizlik esa &#3627408462; − &#3627408463; < 0 ekanini bildiradi.

2. Sonli tengsizlik larning asosiy xossalari

1.1 -m iso l. Agar &#3627408475; &#3627408474; to’g’ri kasr bo’lsa, u holda &#3627408475; &#3627408474; < &#3627408475;+1 &#3627408474;+1 bo’lishini isbotlang. ∆ &#3627408475; &#3627408474; kasr &#3627408475; < &#3627408474; bo’lganda (n va m – natural sonlar) to’g’ri kasr deb ata lishini eslatib o’tamiz. Ushbu &#3627408475; &#3627408474; − &#3627408475;+1 &#3627408474;+1= &#3627408475;(&#3627408474;+1)−&#3627408474;(&#3627408475;+1) &#3627408474;(&#3627408474;+1) = &#3627408475;−&#3627408474; &#3627408474;(&#3627408474;+1) ayirma noldan kichik , chunki &#3627408475; − &#3627408474; < 0,&#3627408474; > 0,&#3627408474; + 1 > 0. Binobarin, &#3627408475; &#3627408474; < &#3627408475;+1 &#3627408474;+1 .▲ 1. 2-m iso l. Agar &#3627408462; ≠ &#3627408463; bo’lsa, u holda &#3627408462;2+ &#3627408463;2 > 2&#3627408462;&#3627408463; bo’lishini isbotlang. ∆ &#3627408462;2+ &#3627408463;2− 2&#3627408462;&#3627408463; ayirma musbat ekanligini isbotlaymiz. Haqiqatan ham, &#3627408462;2+ &#3627408463;2− 2&#3627408462;&#3627408463; = (&#3627408462; − &#3627408463;)2 > 0, chunki &#3627408462; ≠ &#3627408463; . ▲ 1. 1-teorema . Agar &#3627408462; > &#3627408463; va &#3627408463; > &#3627408464; bo’lsa, u holda &#3627408462; > &#3627408464; bo’ladi. Δ Shartga ko’ra &#3627408462; > &#3627408463; va &#3627408463; > &#3627408464;. Bu &#3627408462; − &#3627408463; > 0 va &#3627408463; − &#3627408464; > 0 ekanini bildiradi. &#3627408462; − &#3627408463; va &#3627408463; − &#3627408464; musbat sonlarni qo’shib, (&#3627408462; − &#3627408463;)+ (&#3627408463; − &#3627408464;)> 0 ni hosil qilamiz, ya’ni &#3627408462; − &#3627408464; > 0. Demak, &#3627408462; > &#3627408464;. ▲

1.2 -teorema. Agar tengsizlikning ikkala qismiga ayni bir son qo’shilsa, u holda tengsizlik ishorasi o’zgarmaydi. Δ &#3627408514; > &#3627408515; bo’lsin . Bu holda ixtiyoriy &#3627408464; son uchun &#3627408462; + &#3627408464; > &#3627408463; + &#3627408464; teng -sizlikning bajarilishini isbotlash talab qilinadi. Ushbu (&#3627408462; + &#3627408464;)− (&#3627408463; + &#3627408464;)= &#3627408462; + &#3627408464;− &#3627408463; − &#3627408464; = &#3627408462; − &#3627408463;ayirmani qaraymiz. Bu ayirma musbat, chunki masalaning shartiga ko’ra &#3627408462; > &#3627408463;. Demak, &#3627408462; + &#3627408464; > &#3627408463; + &#3627408464;. ▲ 1.1 -Natija. Istalgan qo’shiluvchini tengsizlikning bir qismidan ikkinchi qis -miga shu qo’shiluvchining ishorasini qarama -qarshisiga almashtirgan holda ko’chirish mumkin. Δ &#3627408514; > &#3627408515; + &#3627408516; bo’lsin . Bu tengsizlikning ikkala qismiga – &#3627408464; sonni qo’shib, &#3627408462; − &#3627408464; > &#3627408463; + &#3627408464; − &#3627408464; ni hosil qilamiz, ya’ni &#3627408462; − &#3627408464; > &#3627408463; ▲ 1. 3-teorema. Agar tengsizlikning ikkala qismi ayni bir musbat songa ko’ paytrilsa, u holda tengsizlik ishorasi o’zgarmaydi. Agar tengsizlikning ikkala qismi ayni bir manfiy songa ko’paytrilsa,u holda tengsizlik ishorasi qarama -qarshisiga o’zgaradi. Δ 1) &#3627408514; > &#3627408515; va &#3627408516; > ?????? bo’lsin . &#3627408462;&#3627408464; > &#3627408463;&#3627408464; ekanini isbotlaymiz. Shartga ko’ra &#3627408462; − &#3627408463; > 0 va &#3627408464; > 0. Shuning uchun (&#3627408462; − &#3627408463;)&#3627408464; > 0, ya’ni &#3627408462;&#3627408464; − &#3627408463;&#3627408464; > 0. Demak, &#3627408462;&#3627408464; > &#3627408463;&#3627408464; . 2) &#3627408514; > &#3627408515; va &#3627408516; < ?????? bo’lsin . &#3627408462;&#3627408464; < &#3627408463;&#3627408464; ekanini isbotlaymiz. Shartga ko’ra &#3627408462; − &#3627408463; > 0 va &#3627408464; < 0. Shuning uchun (&#3627408462; − &#3627408463;)&#3627408464; < 0, ya’ni &#3627408462;&#3627408464; − &#3627408463;&#3627408464; < 0. Demak, &#3627408462;&#3627408464; < &#3627408463;&#3627408464; . ▲ 1. 2-Natija. Agar tengsizlikning ikkala qismi ayni bir musbat songa bo’linsa, u holda tengsizlik ishorasi o’zgarmaydi. Agar tengsizlikning ikkala qismi ayni bir manfiy songa bo’linsa,u holda tengsizlik ishorasi qarama -qarshisiga o’zga -radi.

1.4. -teorema. Bir xil ishorali tengsizliklarni qo’shishda xuddi shu ishorali tengsizlik hosil bo’ladi: agar &#3627408462; > &#3627408463; va &#3627408464; > &#3627408465; bo’lsa, u holda &#3627408462; + &#3627408464; > &#3627408463; + &#3627408465; bo’ladi. Δ Shartga ko’ra &#3627408462; − &#3627408463; > 0 va &#3627408464;− &#3627408465; > 0. Ushbu ayirmani qaraymiz: (&#3627408462; + &#3627408464;)− (&#3627408463; + &#3627408465;)= &#3627408462; + &#3627408464; − &#3627408463; − &#3627408465; = (&#3627408462; − &#3627408463;)+ (&#3627408464;− &#3627408465;). Musbat sonlarning yig’indisi musbat bo’lgani uchun (&#3627408462; + &#3627408464;)− (&#3627408463; + &#3627408465;)> 0,ya’ni (&#3627408462; + &#3627408464;)> (&#3627408463; + &#3627408465;). ▲ 1. 5. -teorema. Chap va o’ng qismlari musbat bo’lgan bir xil ishorali teng -sizliklarni ko’paytirish natijasida xuddi shu ishorali tengsizlik hosil bo’ladi: agar &#3627408462; > &#3627408463;,&#3627408464; > &#3627408465; va &#3627408462;,&#3627408463;,&#3627408464;,&#3627408465;– musbat sonlar bo’lsa , u holda &#3627408462;&#3627408464; > &#3627408463;&#3627408465; bo’ladi. Ushbu ayirmani qaraymiz: &#3627408462;&#3627408464; − &#3627408463;&#3627408465; = &#3627408462;&#3627408464; − &#3627408463;&#3627408464; + &#3627408463;&#3627408464; − &#3627408463;&#3627408465; = &#3627408464;(&#3627408462; − &#3627408463;)+ &#3627408463;(&#3627408464;− &#3627408465;) Shartga ko’ra &#3627408462; − &#3627408463; > 0,&#3627408464; − &#3627408465; > 0,&#3627408463; > 0,&#3627408464; > 0. Shuning uchun (&#3627408462; − &#3627408463;)+ &#3627408463;(&#3627408464;− &#3627408465;)> 0, ya’ni &#3627408462;&#3627408464; − &#3627408463;&#3627408465; > 0, bundan &#3627408462;&#3627408464; > &#3627408463;&#3627408465; . ▲