logo

CHIZIQLI TENGLAMALAR SISTEMACINI YECHISH

Загружено в:

08.08.2023

Скачано:

0

Размер:

146.291015625 KB
Reja:
Kirish.
1.Chiziqli tenglamalar sistemasini Gauss usulida hisoblash
2.Chiziqli tenglamalar sistemasini Kramer usulida hisoblash
3.Matritsa   tenglamasini   teskari   matritsa   toppish   usulida
hisoblash
Xulosa .
Foydalanilgan adabiyotlar. 1.   CHIZI Q LI TENGLAMALAR SISTEMACINI  Y ECHISH
Chiziqli tenglamalar sistemasini Gauss, Kramer va teskari matritsa usullari bilan  y echimini topish 
masala la rini ko‘ramiz.
1.1-masala.   Quyidagi uch noma’lumli chiziqli tenglamalar sistemasi ning  yechimini:  
1) Gauss usuli,    2) Kramer, 3) Matritsa usulida toping.  

	
			
			
			
39	16	25	5	
18	12	14	3	
0	13	7	2	
3	2	1	
3	2	1	
3	2	1	
x	x	x	
x	x	x	
x	x	x
(1) 
1.1. Gauss usulida  y echish.
Yetakchi tenglama uchun birinchi tenglamani  olamiz.  Bu tenglamadan etakchi   noma’lum
uchun x
1  va  a
11 ≠0  ni  etakchi element uchun tanlaymiz. Birinchi tenglama dagi  x
1   ning  koeffitsenti  a
11  ni 1
ga  aylantirish   uchun birinchi  tenglamani ng barcha   qo‘shiluvchilarini   a
11 ≠0 ga  b o‘ lamiz . Ҳosil  bo‘lgan
tenglamadan   foydalanib   ikkinchi   va   uchinchi   tenglmalardan   x
1   nomahlumni   yo‘qotish   yoki   uning
koeffitsentini nolg‘ga aylantirish uchun etakchi tenglamani  –3 ga  ko‘paytirib 2- tenglamaga qo‘shamiz,
so‘ngra   etakchi   tenglamani   –5   ko‘paytirib   3-   teglamaga   qo‘shamiz.   Natijada   quyidagicha   sistemaga
kelamiz: 	







	
		
		
			
39	2
33	
2
15	
18	2
15	
2
7	
0	13	7	2	
3	2	
3	2	
3	2	1	
x	x	
x	x	
x	x	x
Bu tenglamlar sistemasida etakchi tenglama uchu  2- tenglamani  olamiz.  Unda 7/2 koeffitsient l i  x
2







	
		
		
			
7
3	
7
3	
18	2
15	
2
7	
0	13	7	2
332 321	
x
x	x	
x	x	x
bu sistemaning 3- tenglamasidan x
3   nomahlumni  topamiz. x
3  asosida 2- tenglamadan x
2  ni topamiz. x
3 , x
2
lar asosida 1- tenglamadan x
1  ni topamiz.
x
3  =  - 1
x
2  =	
3	)2
15	18(7
2	)	2
15	18(7
2	
3					x
x
1 =	
4	))1	(	13	3	7(
2
1	)	13	7(
2
1	
3	2									x	x
Demak sistema echimi:  x
1 =-4,  x
2 =3,  x
3 = -1 Maple12 dasturida masalani echish.
  Uch   noma’lumli   chiziqli   tenglamalar   sistemasini   oddiy   va   Gauss   usulida   echish( 1 . 1 -
masala).
1 2 3
1 2 3
1 2 32 7 13 0,
3 14 12 18,
5 25 16 39,	
ő ő ő
ő ő ő
ő ő ő	
  	
	  	
	  	
Maple7   dasturida   masalalarni   echishdagi   amallarni   bajarish   uchun     ishchi   oynada     >   belgidan
so‘ng   kerakli buyruqni yozib Enter tugmasini bosish kerak.  
1. Oddiy     usulida echish    ( Gauss.mw ).
> solve( {2*x + 7*y + 13*z = 0, 3*x + 14*y + 12*z =18, 5*x + 25*y +16*z =39}, [x, y, z]);
[x=-4, y=3, z=-1]
2.        Gauss usulida      uch noma’lumli chiziqli tenglamalar sistemasini     echish    .  
> with(LinearAlgebra):
A := <<2,3,5>|<7,14,25>|<13,12,16>>;	
2 7 13	
: 3 14 12	
5 25 16	
A	
 
  
  
> B := <0,18,39>;	
0	
: 18	
39	
b	
 
  
  
> GaussianElimination(A);	
2 7 13	
7 15	0	3 2	
3	0 0	7	
   		   		  
> GaussianElimination(A,'method'='FractionFree');	
2 7 13
0 7 15
0 0 3
 
 		 
 		 
>ReducedRowEchelonForm(<A|b>);
1 0 0 4
0 1 0 3
0 0 1 1	
	 
 
 
 		  3. To‘rt  noma’lumli chiziqli tenglamalar sistemasini Maple12 dasturida   echish
1) Oddiy     usulida echish   
> sys:=({1*x1-5*x2-1*x3+3*x4=-5,2*x1+3*x2+1*x3-1*x4=4,  3*x1-2*x2+3*x3+4*x4=-
1,5*x1+3*x2+2*x3+2*x4=0}):
> solve(sys,{x1,x2,x3,x4});{x4	=	K	3,x2	=	K	1,x1	=	1,x3	=	2}
2)        Gauss usulida        echish   	





	
0.=	2x+	2x+	3x+ 	5x	
-1,=	4x+	3x+	2x-	3x	
4,=	x-	x3+	3x+	2x	
-5,=	3x+	x-  	5x-	x	
4	3	2	1	
4	3	2	1	
4	2	1	
4	3	2	1
> with(LinearAlgebra):
A := <<1,2,3,5>|<-5,3,-2,3>|<-1,1,3,2>|<3,-1,4,2>>;
1 5 1 3
2 3 1 1
:
3 2 3 4
5 3 2 2A  
 
 

 

 

 
 
> b := <-5,4,-1,0>;	
5
4	:	1
0	
B	
 
 
 		 
  
> GaussianElimination(A,'method'='FractionFree');	





	





	
	
		
39/	67	0	0	0	
2	3	0	0	
7	3	13	0	
3	1	5	1
> ReducedRowEchelonForm(<A|b>);	





	





	


3	0	0	0	
2	1	0	0	
1	0	1	0	
1	0	0	1 1. 2.   Kramer  q oidasi  yordamida  echish.
Berilgan   tenglamalar   sistema   nomahlumlarning   koeffitsientlari   va   ozod   hadalari   yordamida
determinantlarni tuzamiz va ularni hisoblashning uchburchak yoki Sarrus usullaridan foydalanamiz. Biz
(1)   tenglamlar   sistemasining   determinantlarini   tuzib,   uchburchak     usulida   hisolab   uni   son   qiymatlarni
topamiz.
16255 21143 1375

 3	336	600	910	420	975	448	
16	7	3	25	2	12	13	14	5	5	12	7	13	25	3	26	14	2	
							
																			
12	2016	0	7098	5850	3276	0	
16	25	39	
12	14	18	
13	7	0	
1									x
99360117015210576
163916 12183 1302
2  x	
x
3  = 	
3	819	900	0	630	0	1092	
39	25	5	
18	14	3	
0	7	2	
						
Maple12 dasturida masalani echish.
> with(Student[LinearAlgebra]):
> d := <<2,3,5>|<7,14,25>|<13,12,16>>; 
> d:=Determinant(d);	





	





	
	
		
39/	67	0	0	0	
2	3	0	0	
7	3	13	0	
3	1	5	1
> ReducedRowEchelonForm(<A|b>);	





	





	


3	0	0	0	
2	1	0	0	
1	0	1	0	
1	0	0	1 1. 2.   Kramer  q oidasi  yordamida  echish.
Berilgan   tenglamalar   sistema   nomahlumlarning   koeffitsientlari   va   ozod   hadalari   yordamida
determinantlarni tuzamiz va ularni hisoblashning uchburchak yoki Sarrus usullaridan foydalanamiz. Biz
(1)   tenglamlar   sistemasining   determinantlarini   tuzib,   uchburchak     usulida   hisolab   uni   son   qiymatlarni
topamiz.
16255 21143 1375

 3	336	600	910	420	975	448	
16	7	3	25	2	12	13	14	5	5	12	7	13	25	3	26	14	2	
							
																			
12	2016	0	7098	5850	3276	0	
16	25	39	
12	14	18	
13	7	0	
1									x
99360117015210576
163916 12183 1302
2  x	
x
3  = 	
3	819	900	0	630	0	1092	
39	25	5	
18	14	3	
0	7	2	
						
Maple12 dasturida masalani echish.
> with(Student[LinearAlgebra]):
> d := <<2,3,5>|<7,14,25>|<13,12,16>>; 
> d:=Determinant(d);
Bu   teskari   matritsa   topish   formulasi   bo‘lib,        A     matritsa   determnanti,   A
ij (i,j=1,2,3)   -   
determinantning  a
ij  elementiga to‘g‘ri keluvchi algebraik to‘ldiruvchisi.   Teskari matritsani topish uchun
A matritsa detreminanti      ni tuzamiz va  uning  alge b raik to‘ldiruvchlar i ni topamiz.	
3	
16	25	5	
12	14	3	
13	7	2	
		
Teskari matritsaning 1- ustun elementlari:
76300224
1625 1214
)1( 11
11  
A
   	
12	)	60	48(	
16	5	
12	3	
)1	(	21	12							A  
            	
5	70	75	
25	5	
14	3	
)1	(	31	13							A
2-ustun elementlari:       213	)	325	112(	
16	25	
13	7	)1( 12
21					 	A
,  	
33	65	32	
16	5	
13	2	
)1	(	22	22								A
   	
15	)	35	50(	
25	5	
7	2	)1	(	32	23							A
3-ustun elementlari:
    	
98	182	84	
12	14	
13	7	
)1	( 13
31					 	A
,        
   	
15	)	39	24(	
12	3	
13	2	
)1	(	23	32							A
  	
7	21	28	
14	3	
7	2	
)1	(	33	33							A
A matrtitsaga teskari  A -1
 matritsani yozamiz:




 

7155 153312 9821376
31
1
A
  	
B	A	X			1      tenglama echimini topamiz:	


	




	



	






	


	
		
		
	



	



	
1
3
4	
39
18
0	
37	5	35	
5	11	4	
3	98	71	2	
3
2
1
x
x
x	
X
x
1  = -4,    x
2  = 3,     x
3  = -1
Maple12 dasturida masalani echish.
> with(Student[LinearAlgebra]):
> A := <<2,3,5>|<7,14,25>|<13,12,16>>;	


	



	
16	25	5	
12	14	3	
18	7	2	
A
> B := <<0,18,39>>;	




	





	
39
18
0	
:B
> X:=A^(-1).B;        X : =



	







1
3
4
1. 4 .  Matritsaviy tenglamani echish
Quyi dagi     matritsaviy   tenglamani   undaagi   koeffitsent   matritsaga   teskari   matritsa   topish   bilan
ech amiz.  	


	



	
	
	


	


	

	
5	5	2	
2	4	2	
6	4	13	
0	1	1	
2	1	0	
1	3	1	
Ő
Yuqorida keltirilgan formula (*) va (**) formulalar 
BXA 
,  	
B	A	X			1
  asosida echish uchun oldin   	
1A   ni   topamiz   va unga B    matritsani  ko‘paytiramiz.  Bu amalni Maple 7
dasturida quyidagicha bajaramiz:
> with(Student[LinearAlgebra]):
> A := <<1,0,1>|<3,1,-1>|<-1,-2,0>>;	


	


	

	
	
0	1	1	
2	1	0	
1	3	1	
:A
 >  A -1
:=A^(-1);	


	


	
		
	
	
		
7
1	
7
4	
7
1	
7
2	
7
1	
7
2	
7
5	
7
1	
7
2	
:1A
 > B := <<13,2,-2>|<-4,-4,5>|<6,2,5>>;	




	





	
	
	
5	5	2	
2	4	2	
6	4	13	
:B
 > X:=A^(-1).B;	




	




	
	
		
1	1	1	
0	2	4	
5	3	2	
:	X
1.   CHIZI Q LI TENGLAMALAR SISITEMACINI ECHISH
Chiziqli tenglamalar sistemasini Gauss, Kramer va teskari
matritsa usullari bilan echimini topish masalarini 
ko‘ramiz. 1.1-masala.   Quyidagi uch nomahlumli chiziqli 
tenglamalar sistemasi ning  echimini:  
1) Gauss usuli,    2) Kramer, 3) Matritsa usulida 
toping.  
        11.  1. {2x
1
−x
2
+x
3
−x
4
=1¿{2x
1
−x
2
−3x
4
=2¿{3x
1
−x
3
+x
4
=−3¿¿¿¿  
  2. 	
{2x
1
+x
2
−x
3
=1¿{x
1
+x
2
+x
3
=6¿¿¿¿    
   
  3)	
(
5	−1	3	
0	2	−1	
−2	−1	0)
Х=
(
3	7	−2	
1	1	−2	
0	1	3	)
 
                  
                     Maple12 dasturida masalani yechish.
To’rt   noma’lumli   chiziqli   tenglamalar   sistemasini
oddiy va  Gauss usulida  y echish( 1 . 1 - masala).
11.  1.   
shartlar orqali javoblarga erishamiz,
>  with(LinearAlgebra):
>  A:=<<4,2,3,2>|<-2,-1,0,2>|<1,1,-1,-2>|<-4,-1,1,5>>;
 := A 







 







4 -2 1 -4
2 -1 1 -1
3 0 -1 1
2 2 -2 5
>  B:=<3,1,-3,-6>;
 := B 







 







3
1
-3
-6
>  GaussianElimination(A); 












 












4 -2 1 -4
0 3
2 -7
4 4
0 0 1
2 1
0 0 0 -3
>  GaussianElimination(A,'method'='FractionFree');








 







4 -2 1 -4
0 6 -7 16
0 0 3 6
0 0 0 -9
>  ReducedRowEchelonForm(<A|B>);

	


	
1	0	0	0	0	
0	1	0	0	2	
0	0	1	0	5
3	
0	0	0	1	-4
3
> 
1. Maple 12,dast urida misollarni Kramer usulida y echish.
Krameer usulida dast avval determenant topiladi va x1 
matritsa kirgizladi va x1 ning xam diterminanti topiladi va x4  
gacha giterminanti topiladi va
Orqali x,y,z topiladi, >  d:=<<2,5,4>|<3,-2,-1>|<-3,2,1>>; := d	


	


	
2	3	-3	
5	-2	2	
4	-1	1
>  d:=Determinant(d);	
 := d	0
>  dx1:=<<0,20,1>|<-8,5,0>|<0,-2,6>>;
 := dx1 




 




0 -8 0
20 5 -2
1 0 6
>  d1:=Determinant(dx1);	
 := 	d1	976
>  dx2:=<<1,5,0>|<5,2,7>|<-8,0,2>>;
> 	
 := 	dx2	


	


	
1	5	-8	
5	2	0	
0	7	2
>  d2:=Determinant(dx2);	
 := 	d2	-326
>  dx3:=<<5,0,9>|<-7,0,6>|<-1,6,0>>;	
 := 	dx3	


	


	
5	-7	-1	
0	0	6	
9	6	0
>  d3:=Determinant(dx3);	
 := 	d3	-558
>  x:=d1|d;y:=d2|d;z:=d3|d; 3. Matritsaviy tenglamani echish
 
Quyidagi     matritsaviy   tenglamani   undaagi   koeffitsent
matritsaga teskari matritsa topish bilan yechamiz.  
A =   X=   
 
,  
  asosida   yechish   uchun   oldin       ni   topamiz   va   unga   X     matritsani
ko‘paytiramiz. Bu amalni Maple 12 dasturida quyidagicha bajaramiz:
Dastavval A matritsa yozib olinadi.
> 
>  A:=<<1,2,-1>|<-1,0,2>|<-8,2,3>>;
 := A 




 




1 -1 -8
2 0 2
-1 2 3
>  A^(-1);













 












1
7 13
28 1
14
2
7 5
28 9
14
-1
7 1
28 -1
14
>  X:=<<-1,0,2>|<0,-2,0>|<1,4,7>>;
 := X 




 




-1 0 1
0 -2 4
2 0 7
>  B:=A^(-1).X;  := B 












 












0 -13
14 5
2
1 -5
14 11
2
0 -1
14 -1
2
Oxirgi qiladigan ishimiz B ni topishimiz uchun M va X ni ko’paytirib olamiz.
Misollar  .
1-misol         
>  eq:={x^2-y^2=0,4-x*y=0}; := 	eq	{	}	,		4	xy	0		x2	y2	0
>  s:=solve(eq,{x,y});	
s	{	}	,	x	2	(	)	RootOf	,		_Z
2	1		label	_L1	y	2	(	)	RootOf	,		_Z 2	1		label	_L1	,	 := 	
{	}	,	x	2	y	2	{	}	,	x	-2	y	-2	,
> 
2-MISOL
>  restart;
>  eq:={x+y=4,1/x+1/y=1};
 := eq { },x y 4 1
x 1
y 1
>  s:=solve(eq,{x,y});	
 := s	,	{	}	,	x	2	y	2	{	}	,	x	2	y	2
> 
3-misol
>  eq:={2*x^2-y^2=46,x*y=10};	
 := 	eq	{	}	,		xy	10			2x2	y2	46
>  s:=solve(eq,{x,y});	
s	{	}	,	x	5	y	2	{	}	,	x	-5	y	-2	,	,	 := 	
{	}	,	x		(	)	RootOf	,		_Z
2	2		label	_L1	y	5	(	)	RootOf	,		_Z 2	2		label	_L1
> 
Xulosa           Chiziqli tenglamalarni maple dasturida ishlashni kurib 
chiqdim , bu    tenglamalarni  Gauss usuli,    2) Kramer, 3) Matritsa 
usulida misollarni ishlab chiqdim.  
Ushbu amaliy mashg’ulotda Maple matematik paketi yordamida 
tenglamalarni va tenglamalar sistemasini yechishning bir nechta usulini 
o’rgandim.Bu amaliy mashg’ulotda matritsaviy tenglamalarni Maple 
matematik paketi yordamida yechishni ko’rib chiqdim .  Ushbu 
laboratoriya ishida Maple matematik paketi yordamida tenglamalarni va
tenglamalar sistemasini yechishning bir nechta usuli o’rgandim. 
Matritsali tenglamani yechish o’rgandim. Foydalanilgan   adabiyotlar
1. Матросов А. Решение задач математики и механики в среде 
Maple 6. СПб.: Питер, 2000. 
2. В.З. АЛАДЬЕВ. Основы программирования в Maple. Таллинн,
2006. 
3. Основы использования математического пакета Maple в 
моделировании: Учебное пособие / Международный институт 
компьютерных технологий. Липецк, 2006. 119с. 
4. Дьяконов В. Maple 6. Учебный курс СПб.: Питер, 2001. 
2. https://arxiv.uz/ru/documents/referatlar/algebra/maple-tizimida-   
tenglama-va-tengsizliklarni-tenglama-va-tengsizliklar-sistemasini-
yechish
3. https://hozir.org/mavzu-mapleda-tenglamalar-sistemasi-va-   
tenglamalarni-yechish.html
4.  Матросов А. Решение задач математики и механики в среде 
Maple 6.
СПб.: Питер, 2000.
5.  В.З. АЛАДЬЕВ. Основы программирования в Maple. Таллинн, 
2006.
3. Основы использования математического пакета Maple в 
моделировании:
Учебное пособие / Международный институт компьютерных 
технологий.
Липецк, 2006. 119с.
6.  Дьяконов В. Maple 
7.  Учебный курс СПб.: Питер, 2001.
8.  Аладьев В.З., Лиопо В.А., Никитин А.В. Математический пакет
Maple в
физическом моделировании.- Гродно: Гродненский госу-
дарственный
университет им.   Янки Купалы , 2002, 416 с. 9. O’runbayev E., Murodov F. Kompyuter algebrasi tizimlarining 
amaliy
tadbiqlari. –SamDU nashri – Samarqand, 2003, 96 s.

Reja: Kirish. 1.Chiziqli tenglamalar sistemasini Gauss usulida hisoblash 2.Chiziqli tenglamalar sistemasini Kramer usulida hisoblash 3.Matritsa tenglamasini teskari matritsa toppish usulida hisoblash Xulosa . Foydalanilgan adabiyotlar.

1. CHIZI Q LI TENGLAMALAR SISTEMACINI Y ECHISH Chiziqli tenglamalar sistemasini Gauss, Kramer va teskari matritsa usullari bilan y echimini topish masala la rini ko‘ramiz. 1.1-masala. Quyidagi uch noma’lumli chiziqli tenglamalar sistemasi ning yechimini: 1) Gauss usuli, 2) Kramer, 3) Matritsa usulida toping.             39 16 25 5 18 12 14 3 0 13 7 2 3 2 1 3 2 1 3 2 1 x x x x x x x x x (1) 1.1. Gauss usulida y echish. Yetakchi tenglama uchun birinchi tenglamani olamiz. Bu tenglamadan etakchi noma’lum uchun x 1 va a 11 ≠0 ni etakchi element uchun tanlaymiz. Birinchi tenglama dagi x 1 ning koeffitsenti a 11 ni 1 ga aylantirish uchun birinchi tenglamani ng barcha qo‘shiluvchilarini a 11 ≠0 ga b o‘ lamiz . Ҳosil bo‘lgan tenglamadan foydalanib ikkinchi va uchinchi tenglmalardan x 1 nomahlumni yo‘qotish yoki uning koeffitsentini nolg‘ga aylantirish uchun etakchi tenglamani –3 ga ko‘paytirib 2- tenglamaga qo‘shamiz, so‘ngra etakchi tenglamani –5 ko‘paytirib 3- teglamaga qo‘shamiz. Natijada quyidagicha sistemaga kelamiz:                39 2 33 2 15 18 2 15 2 7 0 13 7 2 3 2 3 2 3 2 1 x x x x x x x Bu tenglamlar sistemasida etakchi tenglama uchu 2- tenglamani olamiz. Unda 7/2 koeffitsient l i x 2                7 3 7 3 18 2 15 2 7 0 13 7 2 332 321 x x x x x x bu sistemaning 3- tenglamasidan x 3 nomahlumni topamiz. x 3 asosida 2- tenglamadan x 2 ni topamiz. x 3 , x 2 lar asosida 1- tenglamadan x 1 ni topamiz. x 3 = - 1 x 2 = 3 )2 15 18(7 2 ) 2 15 18(7 2 3     x x 1 = 4 ))1 ( 13 3 7( 2 1 ) 13 7( 2 1 3 2         x x Demak sistema echimi: x 1 =-4, x 2 =3, x 3 = -1

Maple12 dasturida masalani echish. Uch noma’lumli chiziqli tenglamalar sistemasini oddiy va Gauss usulida echish( 1 . 1 - masala). 1 2 3 1 2 3 1 2 32 7 13 0, 3 14 12 18, 5 25 16 39, ő ő ő ő ő ő ő ő ő               Maple7 dasturida masalalarni echishdagi amallarni bajarish uchun ishchi oynada > belgidan so‘ng kerakli buyruqni yozib Enter tugmasini bosish kerak. 1. Oddiy usulida echish ( Gauss.mw ). > solve( {2*x + 7*y + 13*z = 0, 3*x + 14*y + 12*z =18, 5*x + 25*y +16*z =39}, [x, y, z]); [x=-4, y=3, z=-1] 2. Gauss usulida uch noma’lumli chiziqli tenglamalar sistemasini echish . > with(LinearAlgebra): A := <<2,3,5>|<7,14,25>|<13,12,16>>; 2 7 13 : 3 14 12 5 25 16 A         > B := <0,18,39>; 0 : 18 39 b         > GaussianElimination(A); 2 7 13 7 15 0 3 2 3 0 0 7              > GaussianElimination(A,'method'='FractionFree'); 2 7 13 0 7 15 0 0 3             >ReducedRowEchelonForm(<A|b>); 1 0 0 4 0 1 0 3 0 0 1 1            

3. To‘rt noma’lumli chiziqli tenglamalar sistemasini Maple12 dasturida echish 1) Oddiy usulida echish > sys:=({1*x1-5*x2-1*x3+3*x4=-5,2*x1+3*x2+1*x3-1*x4=4, 3*x1-2*x2+3*x3+4*x4=- 1,5*x1+3*x2+2*x3+2*x4=0}): > solve(sys,{x1,x2,x3,x4});{x4 = K 3,x2 = K 1,x1 = 1,x3 = 2} 2) Gauss usulida echish       0.= 2x+ 2x+ 3x+ 5x -1,= 4x+ 3x+ 2x- 3x 4,= x- x3+ 3x+ 2x -5,= 3x+ x- 5x- x 4 3 2 1 4 3 2 1 4 2 1 4 3 2 1 > with(LinearAlgebra): A := <<1,2,3,5>|<-5,3,-2,3>|<-1,1,3,2>|<3,-1,4,2>>; 1 5 1 3 2 3 1 1 : 3 2 3 4 5 3 2 2A                  > b := <-5,4,-1,0>; 5 4 : 1 0 B             > GaussianElimination(A,'method'='FractionFree');                39/ 67 0 0 0 2 3 0 0 7 3 13 0 3 1 5 1 > ReducedRowEchelonForm(<A|b>);               3 0 0 0 2 1 0 0 1 0 1 0 1 0 0 1

1. 2. Kramer q oidasi yordamida echish. Berilgan tenglamalar sistema nomahlumlarning koeffitsientlari va ozod hadalari yordamida determinantlarni tuzamiz va ularni hisoblashning uchburchak yoki Sarrus usullaridan foydalanamiz. Biz (1) tenglamlar sistemasining determinantlarini tuzib, uchburchak usulida hisolab uni son qiymatlarni topamiz. 16255 21143 1375  3 336 600 910 420 975 448 16 7 3 25 2 12 13 14 5 5 12 7 13 25 3 26 14 2                           12 2016 0 7098 5850 3276 0 16 25 39 12 14 18 13 7 0 1         x 99360117015210576 163916 12183 1302 2  x x 3 = 3 819 900 0 630 0 1092 39 25 5 18 14 3 0 7 2        Maple12 dasturida masalani echish. > with(Student[LinearAlgebra]): > d := <<2,3,5>|<7,14,25>|<13,12,16>>; > d:=Determinant(d);                39/ 67 0 0 0 2 3 0 0 7 3 13 0 3 1 5 1 > ReducedRowEchelonForm(<A|b>);               3 0 0 0 2 1 0 0 1 0 1 0 1 0 0 1