Mulohazalar algebrasi. Mantiqiy bog‘lovchilar.
Mulo h azalar algebrasi. Mantiqiy bog‘lovchilar. Mulohaza. Matematik mantiqning mulohazalar algebrasi deb atalgan ushbu bo‘limida asosiy tekshirish ob’yektlari bo‘lib gaplar xizmat qiladi. Mulohazalar algebrasida ma’nosiga ko‘ra chin (rost, haqqoniy, to‘g‘ri) yoki yolg‘on (noto‘g‘ri) bo‘lishi mumkin bo‘lgan gaplar bilangina shug‘ullaniladi. Mulohazalar algebrasi mantiq algebrasi deb ham yuritiladi. 1- m i s o l . “Toshkent – O‘zbekistonning poytaxti.”, “Oy yer atrofida aylanadi.” va “Agar fuqaro oliy ta’lim muassasalaridan birini muvaffaqiyatli tamomlasa, u holda unga oliy ma’lumotliligini tasdiqlovch diplom beriladi.” degan gaplarning har biri chin, ammo “Yer oydan kichik.”, “ 5 <3” va “Ot, qo‘y, echki, it va mushuk uy hayvonlari emas.” degan gaplarning har biri esa yolg‘ondir. ■ Shuni ham ta’kidlash kerakki, ko‘pchilik gaplarning chin yoki yolg‘onligini darhol aniqlash qiyin. Masalan, “Bugungi tun kechagidan qorong‘iroq.” degan gap qaysi holda, qachon va qaysi joyda aytilishiga (tasdiqlanishiga) qarab chin ham, yolg‘on ham bo‘li shi mumkin. Albatta, chin yoki yolg‘onligini aniqlash imkoniyati bo‘lmagan gaplar ham bor. Masalan, “Oldimga kel!”, “Uyda bo‘ldingmi?”, “Yangi yil bilan tabriklayman!”, “Agar oldin bilganimda…” degan gaplar shunday gaplar jumlasira kiradi. Bundan keyin, chin qiymatni, qisqacha, ch, yolg‘on qiymatni esa, yo bilan belgilaymiz. Yozuvni ixchamlashtirish maqsadida chin qiymat 1, yolg‘on qiymat esa, 0 bilan ham belgilanishi mumkin. Bunday belgilash mantiqiy qiymatni sonli qiymat bilan, aniqrog‘i, sonning ikkilik sanoq sistemasidagi ifodalanishi bilan aloqasini o‘rnatishda yordam beradi. 1- t a ’ r i f . Ma’nosiga ko‘ra faqat chin yoki yolg‘on qiymat qabul qila oladigan darak gap mulohaza deb ataladi. Bu ta‘rifga ko‘ra har bir mulohaza muayyan holatda chin yoki yolg‘on bo‘lishi mumkin. Mulohazalarni belgilash uchun, asosan, lotin alifbosining kichik harflari (ba’zan indekslari bilan) ishlatiladi: .
Shunday mulohazalar borki, ular mumkin bo‘lgan barcha hollarda (vaziyatlarda) ch (yoki yo) qiymat qabul qiladi. Bunday mulohazalar absolyut chin (yolg‘on) mulohazalar deb ataladi. Mulohazalar algebrasida, odatda, muayyan o‘zgarmas mulohazalar (ch, yo) bilangina emas, balki istalgan mulohazalar bilan ham shug‘ullaniladi. Bu esa o‘zgaruvchi mulohaza tushunchasiga olib keladi. Agar berilgan mulohazani x deb belgilasak, u holda x ch yoki yo qiymat qabul qiladigan o‘zgaruvchi mulohazani ifodalaydi. Faqat bitta tasdiqni ifodalovchi mulohazani elementar (oddiy) mulohaza deb hisoblaymiz. Elementar mulohazalar qatoriga ch, yo o‘zgarmas mulohazalar ham kiradi. O‘zbek tilidagi “emas”, “yoki”, “va”, “agar ... bo‘lsa, u holda … bo‘ladi”, “.... bo’ladi faqat va faqat .... bo’lsa”, shunda va faqat shundagina ...., qachonki ....” so‘zlar (bog‘lovchilar, so‘zlar majmuasi) vositasida mulohazalar ustidagi (orasidagi) mantiqiy amallar deb yuritiluvchi amallar ifodalanishi mumkin. Bu amallar yordamida elementar mulohazalardan murakkab mulohaza tuziladi (quriladi, yasaladi). 1- misolda bayon etilgan 1-, 2-, 4-va 5- mulohazalar elementar mulohazalarga, 3- va 6-mulohazalar esa murakkab mulohazalarga misol bo‘la oladi. Mulohazalar ustidagi mantiqiy amallar matematik mantiqning elementar qismi hisoblangan mulohazalar mantiqi, ya’ni mulohazalar algebrasi qismida o‘rganiladi. Har ikkala atama (“mulohazalar mantiqi” va “mulohazalar algebrasi”) sinonim sifatida ishlatiladi, chunki ular mantiqning muayyan qismini ikki nuqtai nazardan ifodalaydi: u ham mantiqdir (o‘z predmetiga ko‘ra), ham algebradir (o‘z usuliga ko‘ra). Mulohazalar algebrasidagi mantiqiy amallar o‘ziga xos xususiyatlarga ega, chunki ularning tarkibiga kiruvchi mulohaza(lar) faqat ikki (ch, yo) qiymatdan birini qabul qilishi mumkin. Mantiqiy amallarni o‘rganishdan oldin bu amallarda qatnashuvchi o‘zgaruvchilar qiymatlari kombinatsiyalari bilan tanishamiz. Berilgan bitta o‘zgaruvchi elementar mulohaza uchun ikkita ( ) mumkin bo‘lgan bir-biridan farqli qiymatlar satrlari bor:
ch. yo, Berilgan ikkita o‘zgaruvchi elementar mulohazalar uchun barcha mumkin bo‘lgan bir-biridan farqli qiymatlar satrlari kombinatsiy alari to‘rtta ( ): ch. ch, yo, ch, ch, yo, yo, yo, O‘zgaruvchi elementar mulohazalar soni 3, 4 va hokazo bo‘lgan hollarda ham yuqoridagidek mumkin bo‘lgan qiymatlar satrlari kombinatsiyalarini yozish mumkin. Umuman olganda, berilgan n ta o‘zgaruvchi elementar mulohazalar uchun barcha mumkin bo‘lgan bir-biridan farqli qiymatlar satrlari kombinatsiyalari soni bo‘lishini osonlik bilan isbotlash mumkin (II bobdagi 3- paragrafga qarang). Agar biror amal tarkibiga kiruvchi operandlar (parametrlar, o‘zgaruvchi va hokazo) soni birga teng bo‘lsa, u holda bunday amal unar amal deb, operandlar soni ikkiga teng bo‘lganda esa, binar amal deb yuritiladi ch. , ch , ... ch, ch, ch, . .......... .......... .......... yo, yo, , ... yo, yo, ch, . .......... .......... .......... ch, ch, , yo,... yo, yo, yo, ch, , yo,... yo, yo, ch, yo, , yo,... yo, yo, yo, yo, , ... yo, yo, yo, Matematik mantiqning ko‘pchilik bo‘limlarida chinlik jadvali deb ataluvchi jadvallardan foydalanish qulay hisoblanadi. Quyida unar va binar mantiqiy amallarning chinlik jadvallari keltiriladi.
Berilgan bitta x o‘zgaruvchi elementar mulohaza uchun bir-biridan farqli qiymatlar satrlari ikkita bo‘lgani sababli jami ta turli unar mantiqiy amallar bor. Barcha unar mantiqiy amallar ( ) natijalari 1- jadvalda (chinlik jadvalida) keltirilgan. Berilgan ikkita x va y o‘zgaruvchi elementar mulohazalar uchun jami to‘rtta bir-biridan farqli qiymatlar satrlari kombinatsiyalari tuzish mumkin bo‘lgani sababli barcha turli binar mantiqiy amallar soni ga teng. Mumkin bo‘lgan barcha turli binar mantiqiy amallar ( ) natijalari 2- jadvalda (chinlik jadvalida) keltirilgan. Mantiqiy amallarni yuqoridagi usul bilan o‘rganishni davom ettirib, berilgan uchta x , y , z o‘zgaruvchi elementar mulohazalar uchun hammasi bo‘lib sakkizta ( ) bir-biridan farqli qiymatlar satrlari kombinatsiyalari tuzish mumkinligini va, shu sababli, turli ta ternar mantiqiy amallar borligini ta’kidlaymiz. Tarkibidagi o‘zgaruvchi elementar mulohazalari to‘rtta bo‘lgan turli mantiqiy amallar esa ta. Mulohazalar ustida mantiqiy amallar. Asosiy mantiqiy amallar beshta bo‘lib, ulardan biri unar, to‘rttasi esa binar 2- jadval.
amaldir. Ular quyida bayon etilgan. 1. Inkor amali. Inkor amali mulohazalar mantiqining eng sodda amallaridan biri bo‘lib, u unar amaldir, ya’ni inkor amali bitta elementar mulohazaga nisbatan qo‘llaniladi. 2- t a ’ r i f . Berilgan x elementar mulohaza chin bo‘lganda yo qiymat qabul qiluvchi va, aksincha, x yolg‘on bo‘lganda ch qiymat qabul qiluvchi murakkab mulohaza x mulohazaning inkori deb ataladi. “Berilgan mulohazaning inkori unga inkor amalini qo‘llab hosil qilindi” deb aytish mumkin. Inkor amali 1- jadvalda ifodalangan amalidan iborat bo‘lib, unga o‘zbek tilidagi “emas” bog’lovchisi mos keladi. Berilgan x mulohazaning inkori kabi belgilanadi. mulohaza “ x emas” deb o‘qiladi. Inkor amalini belgilashda “ ” belgi ham qo‘llanilishi mumkin. Bu holda mulohazaning inkori shaklda yoziladi. x mulohazaning inkori uchun chinlik jadvali 3- jadval bo‘ladi (1- jadvalning x va ustunlariga qarang). 3- jadvalni inkor amalining ekvivalent ta’rifi sifatida ham qabul qilish mumkin. 3-jadval yo ch ch yo 2- m i s o l . “Bugun havo sovuq.” degan elementar mulohazasi x bilan belgilangan bo‘lsa, uning inkori x “Bugun havo sovuq emas.” ko‘rinishdagi murakkab mulohazadan iboratdir. ■ 2. Kon’yunksiya (mantiqiy ko‘paytma) amali. Endi ikkita mulohazaga nisbatan qo‘llanilishi mumkin bo‘lgan binar amallardan biri hisoblangan kon’yunksiya (mantiqiy ko‘paytma) amalini o‘rganamiz. 0 1 1 0