logo

silindr prizma Hajm

Загружено в:

10.08.2023

Скачано:

0

Размер:

553.6171875 KB
 10  sm
V
2Silindr ko’rinishdagi idishga 1200  sm 3
  suv to’ldirildi .  Silindrga quyilgan 
suv balandligi  12  sm .  Unga biror jism tahslandi  .  Bundan suv  10  sm ga 
ko’tarildi .  Jism hajmini toping ?  Javobini sm 3  
larda ifodalangh	S	V	a	 s		

 2 1	
V
V	
	


 2 1
h	S	
h	S
o o
 2 1	
h
h	

 2 1	
V
V
 2 1	
h
h1200 12
1012  sm1200  sm 3
V
1fizikadan ma’lumki , jism hajmi 
ko’tarilgan suv hajmiga teng .
Hajmlar nisbatini ko’ramiz
3 х
1
0 хВ 9
0
1
0 0        Silindr ko’rinishdagi idishdagi suv balandligi  27  sm .  Boshqa diametri 3marta 
katta bo’gan ikkinchi idishga quyilsa u idishdagi suvning balandligini toping 
Javobni santimetrlarda ifodalang

 2 1
V V	
 2	2	
1	1
h	S	
h	S	
 2	
2	
1	
2	
2
3	
2	
h	
d	
h	
d	


	


	


	


	
	
	

 2 1	
V
V 2727  smV
3 х
1
0 хВ 9
3h
2
V d
3d2
rS
o	
   22 12	4	
9	
4	
h	
d	
h	
d	

 21
9 hh

 21	
9	h
h1
1Hajmlar nisbatini topamiz	

 	
V
VSuyuqlik hajmi 
o’zgarishi .  V
1 =V
2
271
1
9 h=              To’g’ri  burchakli muntazzam prizmaning katetlari 6 va 8 bo’lsa,   
Yon qirralai      teng  .  Tashqi chizilgan silindr hajmini toping 
3 х
1
0 хВ 9
1
2 5
5	

568
105	
h	S	V	a	 	s.		
h	r	V
2
 s.			


	


	
	
	
	
5	
5	
2	
 s	V	
	
	
5	
25		  		
	
	
2	
2	
2	
 s		V     Silindrga ichki chizilgan prizmaning asosi tomoni 2ga teng 
Yon qirralari       .  Tashqi chizilgan silindr hajmini toping
3 х
1
0 хВ 9
4	

2	

2	
h	S	V	a	 	s.		
h	r	V	
2	
 	s.			
4	2 2
2 2	
2	2	2	
2	2			d	
8	
2	
	d	
8		d	
2	2		d	
2		r
d  h	S	V	a	 	s.	
3
1	
Silindr va konusning asosi va balandligi bir xil bo’lib, Konusning 
hajmi 27 ga teng bo’lsa    Silindrning hajmini toping
3 х
1
0 хВ 9
8
1
 sV V
k
Hajmalr orasidagi munosabat	
	
h	S	
h	S
a	
a	
3
1	
h	S	V	a	 s		
3
1
31
 s. .

V V
k27
1
27
V
s .   3=   9 a
3 х
1
0 хВ 9
7
2 9
 2 1
V VHajmlar orasidagi munosabat		
	3	
3	
9	a
a

33
729 aa	
729	
1
a V
2
V
1 Agar k ubning qirrasini 2 mart a ort irilsa, 
k ubning hajmi necha mart a ort adi ?        Kub diagonali           ga teng bo’lsa Uning hajmini 
toping
3 х
1
0 хВ 9
8	22
312 a	
12	
12
a aa To’g’ri burchakli 
parallelepiped uchund 2
 = a 2 
+ b 2 
+ c 2
d 2
 =  3 a 2
Kub uchun	
2	
3	12	a	
2	
4	a		
2			a	2		a
3	2	
куб	V3
 kub. aV      Kub hajmi  24      ga teng bo’lsa, uning diagonalini toping
3 х
1
0 хВ 9
63a aa To’g’ri burchakli 
parallelepiped uchund 2
 = a 2 
+ b 2 
+ c 2
d 2
 =  3 a 2
Kub uchun	
3	
3	24	a		
	
33	3	2	a			
3	2		a	
	 2
2	3	2	3		d	
3	4	3	
2	
			d	
3	4	3				d
8
3
	
3	
2		
2	
3		
3	
3	a		
2	3			d 3
 куб. aV      x 4Ikkita qirrasi  2, 4  teng bo’lgan to’g’ri burchakli  parallelopipedning 
diagonali 6 ga teng  .  Parallelopipedning hajmini toping
3 х
1
0 хВ 9
3
24 2 To’g’ri burchakli 
parallelepiped uchund 2
 = a 2 
+ b 2 
+ c 2
2222
426 x
6
416362
x
162
x
4x4	2	4				V	
abc	V	 пар.     S = a 2
    sinaA a
D  B
b C
a
aA   B
C
D
 parallelogramm
Romb  S = a   b sinaC a	

A  B
b S =      a   b sina
21 d
1
d
2   B
C
DA parallelogramm
romb S =      d
1   d
2  sina
21
A d
2
D  B
d
1 C
S =      d
1   d
2  sin 90 0
21
A  B   C
  D
dd
S =      d   2 
sina
21To’g’ri to’rtburchak 1

10 sm V 2Silindr ko’rinishdagi idishga 1200 sm 3 suv to’ldirildi . Silindrga quyilgan suv balandligi 12 sm . Unga biror jism tahslandi . Bundan suv 10 sm ga ko’tarildi . Jism hajmini toping ? Javobini sm 3 larda ifodalangh S V a s   2 1 V V    2 1 h S h S o o 2 1 h h  2 1 V V 2 1 h h1200 12 1012 sm1200 sm 3 V 1fizikadan ma’lumki , jism hajmi ko’tarilgan suv hajmiga teng . Hajmlar nisbatini ko’ramiz 3 х 1 0 хВ 9 0 1 0 0

Silindr ko’rinishdagi idishdagi suv balandligi 27 sm . Boshqa diametri 3marta katta bo’gan ikkinchi idishga quyilsa u idishdagi suvning balandligini toping Javobni santimetrlarda ifodalang  2 1 V V 2 2 1 1 h S h S 2 2 1 2 2 3 2 h d h d                2 1 V V 2727 smV 3 х 1 0 хВ 9 3h 2 V d 3d2 rS o   22 12 4 9 4 h d h d  21 9 hh  21 9 h h1 1Hajmlar nisbatini topamiz  V VSuyuqlik hajmi o’zgarishi . V 1 =V 2 271 1 9 h=

To’g’ri burchakli muntazzam prizmaning katetlari 6 va 8 bo’lsa, Yon qirralai teng . Tashqi chizilgan silindr hajmini toping 3 х 1 0 хВ 9 1 2 5 5  568 105 h S V a s.  h r V 2 s.            5 5 2 s V   5 25  

    2 2 2 s  V Silindrga ichki chizilgan prizmaning asosi tomoni 2ga teng Yon qirralari . Tashqi chizilgan silindr hajmini toping 3 х 1 0 хВ 9 4  2  2 h S V a s.  h r V 2 s.   4 2 2 2 2 2 2 2 2 2   d 8 2  d 8  d 2 2  d 2  r d