logo

Deduction theorem

Yuklangan vaqt:

08.08.2023

Ko'chirishlar soni:

0

Hajmi:

40.3671875 KB
INDEPENDENT
WORK        
Theme:Deduction theorem                                Plan: 
1.Introduction
2.What is theorem?
3.Examples of deduction theorem
4.Useful theorems 1.
In   mathematical logic,	 a   deduction	 theorem   is	 
a   metatheorem   that	
 justifies	 doing   conditional	 proofs   —	 to	 
prove	
 an	 implication   A   →   B ,	 assume   A   as	 an	 hypothesis	 and	 
then	
 proceed	 to	 derive   B   —	 in	 systems	 that	 do	 not	 have	 an	 
explicit   inference	
 rule   for	 this.	 Deduction	 theorems	 exist	 for	 
both   propositional	
 logic   and   first-order	 logic   The	 deduction	 
theorem	
 is	 an	 important	 tool	 in   Hilbert-style	 deduction	 
systems	
 because	 it permits	 one	 to	 write	 more	 
comprehensible	
 and	 usually	 much	 shorter	 proofs	 than	 would
be	
 possible	 without	 it.	 In	 certain	 other	 formal	 proof	 systems	 
the	
 same	 conveniency	 is	 provided	 by	 an	 explicit	 inference	 
rule;	
 for	 example   natural	 deduction   calls	 it   implication	 
introduction.
In	
 more	 detail,	 the	 propositional	 logic	 deduction	 theorem	 
states	
 that	 if a formula     is	 deducible	 from	 a set	 of	 
assumptions     t={A}	
 then	 the	 implication	 A   B	    is	 deducible	 
from   ;	
 in	 symbols,   =	 {A}+B   implies   .	 B	 In	 the	 special	 case	 
where     is	
 the   empty	 set,	 the	 deduction	 theorem	 claim	 can	 be	 
more	
 compactly	 written	 as:	 A	    B	 implies   .	 The	 deduction	 
theorem	
 for	 predicate	 logic	 is	 similar,	 but	 comes	 with	 some	 
extra	
 constraints	 (that	 would	 for	 example	 be	 satisfied	 if   A   is	 
a   closed	
 formula.	 In	 general	 a deduction	 theorem	 needs	 to	 
take	
 into	 account	 all	 logical	 details	 of	 the	 theory	 under	 
consideration,	
 so	 each	 logical	 system	 technically	 needs	 its	 
own	
 deduction	 theorem,	 although	 the	 differences	 are	 usually	 
minor.
The	
 deduction	 theorem	 holds	 for	 all	 first-order	 theories	 with	 
the	
 usual   deductive	 systems   for	 first-order	 logic.   However,	 
there	
 are	 first-order	 systems	 in	 which	 new	 inference	 rules	 are
added	
 for	 which	 the	 deduction	 theorem	 fails.   Most	 notably,	 
the	
 deduction	 theorem	 fails	 to	 hold	 in	 Birkhoff–von	 
Neumann   quantum	
 logic,	 because	 the	 linear	 subspaces	 of	 
a   Hilbert	
 space   form	 a   non-distributive	 lattice .
2. In   mathematics, a   theorem   is	 a   statement	 that	 has	 
been   proved	
 or	 can	 be	 proved.The   proof   of	 a theorem	 is	 
a   logical	
 argument   that	 uses	 the	 inference	 rules	 of	 
a   deductive	
 system   to	 establish	 that	 the	 theorem	 is	 a   logical	 
consequence   of	
 the   axioms   and	 previously	 proved	 theorems.
In	
 the	 mainstream	 of	 mathematics,	 the	 axioms	 and	 the	 
inference	
 rules	 are	 commonly	 left	 implicit,	 and,	 in	 this	 case,	 
they	
 are	 almost	 always	 those	 of   Zermelo–Fraenkel	 set	 
theory   with	
 the   axiom	 of	 choice,	 or	 of	 a less	 powerful	 theory,	 
such	
 as   Peano	 arithmetic.	 A	 notable	 exception	 is   Wiles's	 
proof	
 of	 Fermat's	 Last	 Theorem	  which	 involves	 
the   Grothendieck	
 universes   whose	 existence	 requires	 to	 add	 
a	
 new	 axiom	 to	 the	 set	 theory.   Generally,	 an	 assertion	 that	 is	 
explicitly	
 called	 a theorem	 is	 a proved	 result	 that	 is	 not	 an	 
immediate	
 consequence	 of	 other	 known	 theorems.	 Moreover,
many	
 authors	 qualify	 as   theorems   only	 the	 most	 important	 
results,	
 and	 use	 the	 
terms   lemma ,   proposition   and   corollary   for	
 less	 important	 
theorems.
In   mathematical	
 logic	 the	 concepts	 of	 theorems	 and	 proofs	 
have	
 been   formalized   in	 order	 to	 allow	 mathematical	 
reasoning	
 about	 them.	 In	 this	 context,	 statements	 
become   well-formed	
 formulas   of	 some   formal	 language.	 
A   theory   consists	
 of	 some	 basis	 statements	 called   axioms ,	 
and	
 some   deducing rules   (sometimes	 included	 in	 the	 
axioms).	
 The	 theorems	 of	 the	 theory	 are	 the	 statements	 that	 
can	
 be	 derived	 from	 the	 axioms	 by	 using	 the	 deducing	 
rules.   This	
 formalization	 led	 to   proof	 theory,	 which	 allows	 
proving	
 general	 theorems	 about	 theorems	 and	 proofs.	 In	 
particular,   Gödel's	
 incompleteness	 theorems   show	 that	 
every   consistent   theory	
 containing	 the	 natural	 numbers	 has	 
true	
 statements	 on	 natural	 numbers	 that	 are	 not	 theorems	 of	 
the	
 theory	 (that	 is	 they	 cannot	 be	 proved	 inside	 the	 theory).
As	
 the	 axioms	 are	 often	 abstractions	 of	 properties	 of	 
the   physical	
 world,	 theorems	 may	 be	 considered	 as	 the	 
expression	
 some	 truth,	 but	 in	 contrast	 to	 the	 notion	 of	 
a   scientific	
 law ,	  which   is   experimental ,	 the	 justification	 of	 the
truth	
 of	 a theorem	 is	 purely   deductive. 3
1. "Prove" axiom	 1:
o P   1.	
 hypothesis
o Q   2.
 hypothesis
 P   3.	
 reiteration	 of	 1
o Q → P   4.	
 deduction	 from	 2 to	 3
P →( Q → P )	
 5.	 deduction	 from	 1 to	 4 QED
2. "Prove"	
 axiom	 2:
o P →( Q → R )	
 1.	 hypothesis
 P → Q   2.	
 hypothesis
 P   3.	
 hypothesis
 Q   4.
 modus	 ponens	 3,2
 Q → R   5.	
 modus	 ponens	 3,1
 R   6.	
 modus	 ponens	 4,5
 P → R   7.	
 deduction	 from	 3 to	 6
o ( P → Q )→( P → R )	
 8.	 deduction	 from	 2 to	 7
( P →( Q → R ))→(( P → Q )→( P → R ))	
 9.	 deduction	 from	 1 to	 8 
QED
3. Using	
 axiom	 1 to	 show	 (( P →( Q → P ))→ R )→ R :
o ( P →( Q → P ))→ R   1.	
 hypothesis
o P →( Q → P )	
 2.	 axiom	 1
o R   3.	
 modus	 ponens	 2,1
(( P →( Q → P ))→ R )→ R   4.
 deduction	 from	 1 to	 3 QED
Virtual rules of inference
From	
 the	 examples,	 you	 can	 see	 that	 we	 have	 added	 three	 
virtual	
 (or	 extra	 and	 temporary)	 rules	 of	 inference	 to	 our	 
normal	
 axiomatic	 logic.	 These	 are	 "hypothesis",	 
"reiteration",	
 and	 "deduction".	 The	 normal	 rules	 of	 inference	 
(i.e.	
 "modus	 ponens"	 and	 the	 various	 axioms)	 remain	 
available.
1.   Hypothesis   is	
 a step	 where	 one	 adds	 an	 additional	 premise
to	
 those	 already	 available.	  So,	 if your	 previous	 step   S   was	 
deduced	
 as: then one	 adds	 another	 premise   H   and	 gets:
This	
 is	 symbolized	 by	 moving	 from	 the	 n-th	 level	 of	 
indentation	
 to	 the	 n+1-th	 level	 and	 saying
 S   previous	
 step
o H   hypothesis
2.   Reiteration   is	
 a step	 where	 one	 re-uses	 a previous	 
step.	
 In	 practice,	 this	 is	 only	 necessary	 when	 one	 
wants	
 to	 take	 a hypothesis	 which	 is	 not	 the	 most	 
recent	
 hypothesis	 and	 use	 it as	 the	 final	 step	 before	 a
deduction	
 step.
3.   Deduction   is	
 a step	 where	 one	 removes	 the	 most	 
recent	
 hypothesis	 (still	 available)	 and	 prefixes	 it to	 
the	
 previous	 step.	  This	 is	 shown	 by	 unindenting	 one	 
level	
 as	 follows:
 H   hypothesis
 .........	
 (other	 steps)
 C   (conclusion	
 drawn	 from   H )
 H → C   deduction
4
The Pythagorean Theorem   (which might not actually 
have been discovered by Pythagoras!). This is the most 
“productive” theorem in history, as huge amounts of 
other theorems have been derived from it… AND it has 
more proofs than any other theorem…. well over a 
hundred on record!
Einstein even used it to derive Special Relativity.
The Fundamental Theorem of Calculus . In essence, this 
says that finding “instantaneous rate of change” is the 
inverse of finding the area under a curve or finding 
volume. That’s not 100% accurate, but close enough.  Since finding instantaneous rate of change is much 
easier than finding area under a curve, this theorem 
makes Calculus possible by using “differentiation” to 
get to “integration” — the second being much harder but
extremely useful.
Newton used it to prove his theories of classical 
mechanics.
So David Joyce is right. But I would add a few others:
Fermat’s Last Theorem : For centuries, this was the 
most famous unsolved (that is, unproven) theorem in 
the world. It no longer is, but the accomplishment of 
proving that thing was monumental.
Godel’s Incompleteness Theorems . In a way, these are 
more statements in logic or rather “meta-mathematics”
(sorry for that term), but they have greatly changed 
many people’s philosophical view of Existence, the 
Universe, and Math. Some people think it rules out Hard
AI and implies that as human beings, we are more than 
robots; other people don’t agree. Still other people 
think it creates some un-fillable “holes” in math

INDEPENDENT WORK Theme:Deduction theorem

Plan: 1.Introduction 2.What is theorem? 3.Examples of deduction theorem 4.Useful theorems

1. In   mathematical logic,  a   deduction  theorem   is   a   metatheorem   that  justifies  doing   conditional  proofs   —  to   prove  an  implication   A   →   B ,  assume   A   as  an  hypothesis  and   then  proceed  to  derive   B   —  in  systems  that  do  not  have  an   explicit   inference  rule   for  this.  Deduction  theorems  exist  for   both   propositional  logic   and   first-order  logic   The  deduction   theorem  is  an  important  tool  in   Hilbert-style  deduction   systems  because  it permits  one  to  write  more   comprehensible  and  usually  much  shorter  proofs  than  would be  possible  without  it.  In  certain  other  formal  proof  systems   the  same  conveniency  is  provided  by  an  explicit  inference   rule;  for  example   natural  deduction   calls  it   implication   introduction. In  more  detail,  the  propositional  logic  deduction  theorem   states  that  if a formula     is  deducible  from  a set  of   assumptions     t={A}  then  the  implication  A   B     is  deducible   from   ;  in  symbols,   =  {A}+B   implies   .  B  In  the  special  case   where     is  the   empty  set,  the  deduction  theorem  claim  can  be   more  compactly  written  as:  A     B  implies   .  The  deduction   theorem  for  predicate  logic  is  similar,  but  comes  with  some   extra  constraints  (that  would  for  example  be  satisfied  if   A   is   a   closed  formula.  In  general  a deduction  theorem  needs  to   take  into  account  all  logical  details  of  the  theory  under   consideration,  so  each  logical  system  technically  needs  its   own  deduction  theorem,  although  the  differences  are  usually   minor. The  deduction  theorem  holds  for  all  first-order  theories  with   the  usual   deductive  systems   for  first-order  logic.   However,   there  are  first-order  systems  in  which  new  inference  rules  are added  for  which  the  deduction  theorem  fails.   Most  notably,   the  deduction  theorem  fails  to  hold  in  Birkhoff–von   Neumann   quantum  logic,  because  the  linear  subspaces  of   a   Hilbert  space   form  a   non-distributive  lattice . 2.

In   mathematics, a   theorem   is  a   statement  that  has   been   proved  or  can  be  proved.The   proof   of  a theorem  is   a   logical  argument   that  uses  the  inference  rules  of   a   deductive  system   to  establish  that  the  theorem  is  a   logical   consequence   of  the   axioms   and  previously  proved  theorems. In  the  mainstream  of  mathematics,  the  axioms  and  the   inference  rules  are  commonly  left  implicit,  and,  in  this  case,   they  are  almost  always  those  of   Zermelo–Fraenkel  set   theory   with  the   axiom  of  choice,  or  of  a less  powerful  theory,   such  as   Peano  arithmetic.  A  notable  exception  is   Wiles's   proof  of  Fermat's  Last  Theorem   which  involves   the   Grothendieck  universes   whose  existence  requires  to  add   a  new  axiom  to  the  set  theory.   Generally,  an  assertion  that  is   explicitly  called  a theorem  is  a proved  result  that  is  not  an   immediate  consequence  of  other  known  theorems.  Moreover, many  authors  qualify  as   theorems   only  the  most  important   results,  and  use  the   terms   lemma ,   proposition   and   corollary   for  less  important   theorems. In   mathematical  logic  the  concepts  of  theorems  and  proofs   have  been   formalized   in  order  to  allow  mathematical   reasoning  about  them.  In  this  context,  statements   become   well-formed  formulas   of  some   formal  language.   A   theory   consists  of  some  basis  statements  called   axioms ,   and  some   deducing rules   (sometimes  included  in  the   axioms).  The  theorems  of  the  theory  are  the  statements  that   can  be  derived  from  the  axioms  by  using  the  deducing   rules.   This  formalization  led  to   proof  theory,  which  allows   proving  general  theorems  about  theorems  and  proofs.  In   particular,   Gödel's  incompleteness  theorems   show  that   every   consistent   theory  containing  the  natural  numbers  has   true  statements  on  natural  numbers  that  are  not  theorems  of   the  theory  (that  is  they  cannot  be  proved  inside  the  theory). As  the  axioms  are  often  abstractions  of  properties  of   the   physical  world,  theorems  may  be  considered  as  the   expression  some  truth,  but  in  contrast  to  the  notion  of   a   scientific  law ,   which is   experimental ,  the  justification  of  the truth  of  a theorem  is  purely   deductive.

3 1. "Prove" axiom  1: o P   1.  hypothesis o Q   2.  hypothesis  P   3.  reiteration  of  1 o Q → P   4.  deduction  from  2 to  3 P →( Q → P )  5.  deduction  from  1 to  4 QED 2. "Prove"  axiom  2: o P →( Q → R )  1.  hypothesis  P → Q   2.  hypothesis  P   3.  hypothesis  Q   4.  modus  ponens  3,2  Q → R   5.  modus  ponens  3,1  R   6.  modus  ponens  4,5  P → R   7.  deduction  from  3 to  6 o ( P → Q )→( P → R )  8.  deduction  from  2 to  7 ( P →( Q → R ))→(( P → Q )→( P → R ))  9.  deduction  from  1 to  8  QED 3. Using  axiom  1 to  show  (( P →( Q → P ))→ R )→ R : o ( P →( Q → P ))→ R   1.  hypothesis o P →( Q → P )  2.  axiom  1 o R   3.  modus  ponens  2,1 (( P →( Q → P ))→ R )→ R   4.  deduction  from  1 to  3 QED Virtual rules of inference From  the  examples,  you  can  see  that  we  have  added  three   virtual  (or  extra  and  temporary)  rules  of  inference  to  our   normal  axiomatic  logic.  These  are  "hypothesis",   "reiteration",  and  "deduction".  The  normal  rules  of  inference   (i.e.  "modus  ponens"  and  the  various  axioms)  remain   available. 1.   Hypothesis   is  a step  where  one  adds  an  additional  premise to  those  already  available.   So,  if your  previous  step   S   was   deduced  as: