logo

Sonning butun qismi

Yuklangan vaqt:

10.08.2023

Ko'chirishlar soni:

0

Hajmi:

1168.6162109375 KB
i9 presentation to Joe 
Smith1 Mavzu:
Sonning butun 
qismi                 i9 presentation to Joe 
Smith2 Maqsad :
Sonning butun qismi funksiyasi bilan tanishish
Sonning butun qismi funksiyasi grafigini yasash
Mustaqil misollar yecha olish ko` nik masini shakllantirishButun qism funksiyasi qo` llanilishiga doir misollar yechish . 1
2
3
4              i9 presentation to Joe 
Smith3Sonning butun qismi 
Sonning butun qismi deb, shu 
sondan katta bo`lmagan butun 
sonlar ichida eng kattasiga 
aytiladi va [x] kabi belgilanadi. 
Masalan, [3,45]=3, [-2,5]=-3, 
[2]=2 , [0.23]=0              i9 presentation to Joe 
Smith4Sonning butun qismi 
Sonning butun qismi funksiyasi 
“ant`ye” funksiyasi deb ham 
ataladi.               i9 presentation to Joe 
Smith5  y=[x] funksiya grafigi
ZyZxE RxRyD
 
,)( ,)(              i9 presentation to Joe 
Smith6Ant`ye funksiyasi xossalari:
.,,y-x holda u bo`lsa, [y][x] Agar 6. Z;  R,xagar  m,x][][x. [0;1); Z,xagar x,]4.[x R;xagar  1,x][x[x] 3. R;xagar  x,[x]1-x 2. Z;xagar  x,[x] 1.
Ryxmm
     
15	              i9 presentation to Joe 
Smith7 1
n sonidan k at t a bo` l maga n nat ural sonl ar i chida 
necht asi k  soniga    qoldiqsiz bo` linadi? 




k n
•
100 dan katta bo`lmagan natural sonlar ichida nechtasi 7 ga 
qoldiqsiz bo`linadi?
14
7100




              i9 presentation to Joe 
Smith8 1
[n;m ]                          k esmada joy l ashgan 
sonlardan necht asi k  soniga qol diqsiz 
bo` linadi? Nnm ,



 





kn
km 1
•
Barcha uch xonali  natural sonlar ichida nechtasi 7 ga 
qoldiqsiz bo`linadi?128	14	142	
7
99	
7
999	
			
	

		
	

              i9 presentation to Joe 
Smith9 1
•
1 dan  N  gacha natural sonlar ichida nechtasi a ga ham,  b  ga 
ham bo`linmaydi ?

	


	

	

	
	
	
	

		
	

		
b	a
N	
b
N	
a
N	
N              i9 presentation to Joe 
Smith10 1
1 da n 100 gacha sonl ar i chida necht asi 2 ga ham,  3  ga ham  
bo` li nmay di?33	16	33	50	100	3	2
100	
3
100	
2
100	100	
16	3	2
100	3	2	
33	3
100	3	
50	2
100	2	
				

	


	

	

	
	
	


	

		

	

	
	

	

	

	

	
)	(	
sonlar  	igan	bo`linmayd 	ham 	ga 3 	ham, 	ga 2	
`	
`
`	
sonlar	linadigan	bo	ga	va	ga	
sonlar	linadigan	bo	
sonlar	linadigan	bo              i9 presentation to Joe 
Smith11 1
•
1 dan  N  gacha natural sonlar ichida nechtasi  a  ga ham,  b  
ga ham,  c  ga ham  bo`linmaydi ?

	


	

	

	
		

	

	
	

	

	
	

	

	
	

	

	
	

	
	

		
c	b	a	
N	
c	a
N	
c	b
N	
b	a
N	
c
N	
b
N	
a
N	N              i9 presentation to Joe 
Smith12 1
•
1 dan  100  gacha natural sonlar ichida nechtasi 2 ga ham, 
3  ga ham,  5  ga ham  bo`linmaydi ?
26310616203350100 532 100
52100
53100
32100
5100
3100
2100
100
 







































)(              i9 presentation to Joe 
Smith13 •
21!  ni tub ko`paytuvchilarga ajrating.
8765
43
21
1917131175322120432121							  ...!	
18	1	2	5	10	2
21	
2
21	
2
21	
2
21	
2
21	5	4	3	2	1							
	
		
	
		
	
		
	
		
	
		...	
927
3 21
3 21
321
322 
















1
19 21
1
17 21 1
13 21
1
11 21 3
721
4
521
87 65 43










 









 









	
		
		
	
111134918
19171311753221 !              i9 presentation to Joe 
Smith14 DTM 2019
 toping. qiymatini ning n bo`lsa, son toq ifoda
411!
  son. butunmusbat -  n
n
nn CC
28
2
22
22 1



n
411!Suratdagi ifodada 2 ning darajasini aniqlaymiz 	
8	1	2	5	2
11	
2
11	
2
11	
3	2	1				
	


	


	

	
2n=8
n=4              i9 presentation to Joe 
Smith15 DTM 2019
toping. qiymatini kichik eng ning b bo`lsa, 
! !
A 7aA
 Agar   sonlardir. natural b va a b



 
42150
a
B C
A 
 
 18
624
7
77
42150
! !
b=18 6
742 24321
7150
7150
2




 








              i9 presentation to Joe 
Smith16 toping qiymatini katta eng  ning n bo`ladigan son natural ifoda !
n
640		n	n	n	n	
C	C	
3	2	
3	2	3	2	
6
40	18	38	18	38	
	
			
	
			
3	2	
 !
n=18	
	
 yetarli ko`rish darajasini gkattasinin sonlaridan  b va a  uchun bo`linishi qoldiqsiz ga  ba  ifoda.... n
 3
21
532			              i9 presentation to Joe 
Smith17 DTM 2019
nnn
52 52
52 52
0 
 !
)( !
1 52!
n
n=12
Berilgan son 12 ta nol bilan tugaydi.52! ifoda nechta nol bilan tugaydi? 
Bu sonni 10 ning qanday  eng katta darajasiga bo`linishini topishimiz 
yetarli12	2	10	5
52	
5
52	2				
	
		
	
              i9 presentation to Joe 
Smith18 DTM 2019 	toping. 	qiymatini 	kichik 	eng 	ning b	
 	bo`lsa,  	60!  	sonlardir. 	natural b 	va a	b	a	21	
bbb
7321  C 928
7360 !
Ca bb
 928
7373
b=9              i9 presentation to Joe 
Smith19 •
Tenglama yechimga ega bo`lishi  uchun  n  soni albatta 
butun bo`lishi kerak! Aks holda tenglama yechimga 
ega bo`lmaydi
yechiladi keltirilib  katengsizlik  1nxn  tenglamani n[x]  ko`ra xossasiga funksiyasi qismi butun Sonning
 yeching tenglamani n[x]               i9 presentation to Joe 
Smith20 •
Javob: (-4;-1,5] ],;(
);( );(],;(1-x 5x
  yeching Tenglamani 
514
14 151
0
1 4 0
1 32
4
15 3
15 43 3
15


 





 
 





 
  






xx x x
x xx x x x              i9 presentation to Joe 
Smith21 5 4
15 7 5 4
1
5 715 15 7
0
5 715 31
30 1 30 131
40403910 403910
1
40 3910 40 3910 1
40 3910
40 3910 15 75
8 6
8 5 15 75
5 715 5 715
21     






 




  




  



 




  
 




 
xxjavob xx xx t tt
tt tt
tt tt tt
ttt tt t
xtx x
,: ko`ramiz xollarni 1t va  0t nekanligida son butunt    , ,8 6x5
    son. butunt  Bunda•kiritamiz. Belgilash• 8 6x5
  yeching Tenglamani               i9 presentation to Joe 
Smith22 1
2 142 14 2 14
4 12 4

 



  
 

tt
t tt t
xtx  12x
[x]yeching 	tenglamani 1	2x-	4[x]	              i9 presentation to Joe 
Smith23 chizamiz nigrafiklari funksiya yechamiz.  usulda grafik va olamiz keltirib  shaklga 12x
[x] Tenglamani




  

4 12 4
x
y xy	
yeching 	tenglamani 1	2x-	4[x]	
Grafiklar bitta nuqtada 
kesishadi. x=1,5              i9 presentation to Joe 
Smith2462,	3	x
5x	  	yeching 	Tenglamani 	
	
	
 olmaydi bo`la teng ga 2,6 qismi butun sonning sababi emas, ega yechimga Tenglama              i9 presentation to Joe 
Smith25 Test 
 teng? nechaga yig`indi  cba bo`lsa, o`rinli tenglik  5328!-6!  uchunsonlar  butunmusbat  c va b a, 1. cb
  a
2
a) 11
b) 12
c) 10
d) 9              i9 presentation to Joe 
Smith26 Test 
a) 81
b) 82
c) 80
d) 90•
2. Nechta uch xonali natural son 11 ga qoldiqsiz bo`linadi?              i9 presentation to Joe 
Smith27 Test 
a) 10
b) 11
c) 8
d) 18•
3. 25! soni 3 ning qanday eng katta darajasiga qoldiqsiz 
bo`linadi?               i9 presentation to Joe 
Smith28 Test 
a) 10
b) 11
c) 14
d) 12•
4. 23∙24∙…∙60 soni 5 ning qanday eng katta darajasiga 
qoldiqsiz bo`linadi?               i9 presentation to Joe 
Smith29 Test 
a) 131
b) 130
c) 150
d) 69•
5. 200 dan katta bo`lmagan natural sonlardan nechtasi 2 
ga ham, 5 ga ham, 7 ga ham bo`linmaydi?               i9 presentation to Joe 
Smith30 Test 
a) 1
b) 3
c) 4
d) 2•
6. [x]=3 bo`lsa, x nechta butun qiymat qabul qila oladi?               i9 presentation to Joe 
Smith31 Test 
a) 4,6
b) 1,6
c) 2,6
d) 5,6•
7. Hisoblang  [-3,25]+1,6+[7,25]=              i9 presentation to Joe 
Smith32 Test 
a) -3
b) -4
c) -2
d) -5					 359919908  )(,,. Hisoblang              i9 presentation to Joe 
Smith33 Test 
a) 2
b) 3
c) 0
d) 1 59 




4 13-3x
bor   ildizi butun nechta ngTenglamani.
337
11 37333 2413320 6
   
x x x 4 13-3x
5               i9 presentation to Joe 
Smith34 Test 
a) [-7,5;-5,5)
b) [-7,5;-5,5]
c) (-7,5;-5,5)
d) (-7,5;0] 210 



 
2 3,5x
   yeching Tenglamani.              i9 presentation to Joe 
Smith35 Xulosa 
•
Sonning butun qismi funksiyasi umumiy o`rta ta`lim 
maktablarida chuqur o`rganilmaydi. Faqatgina sonning 
butun qismini topish topishga doir ma`lumotlar keltirilgan. 
Lekin yuqorida ko`rib o`tilgan va shunga o`xshash misollar 
orqali o`quvchilarni yanada fanga qiziqtirish mumkin. 
•
Bu tipdagi misollarni darsdan tashqari mashg`ulotlarda 
ko`rib chiqish tavsiya etiladi.

i9 presentation to Joe Smith1 Mavzu: Sonning butun qismi

i9 presentation to Joe Smith2 Maqsad : Sonning butun qismi funksiyasi bilan tanishish Sonning butun qismi funksiyasi grafigini yasash Mustaqil misollar yecha olish ko` nik masini shakllantirishButun qism funksiyasi qo` llanilishiga doir misollar yechish . 1 2 3 4

i9 presentation to Joe Smith3Sonning butun qismi Sonning butun qismi deb, shu sondan katta bo`lmagan butun sonlar ichida eng kattasiga aytiladi va [x] kabi belgilanadi. Masalan, [3,45]=3, [-2,5]=-3, [2]=2 , [0.23]=0

i9 presentation to Joe Smith4Sonning butun qismi Sonning butun qismi funksiyasi “ant`ye” funksiyasi deb ham ataladi.

i9 presentation to Joe Smith5 y=[x] funksiya grafigi ZyZxE RxRyD   ,)( ,)(